Motivated by problems in algebraic complexity theory (e.g., matrix multiplica-tion) and extremal combinatorics (e.g., the cap set problem and the sunflower problem), we introduce the geometric rank as a new tool in the study of tensors and hypergraphs. We prove that the geometric rank is an upper bound on the subrank of tensors and the independence number of hypergraphs. We prove that the geometric rank is smaller than the slice rank of Tao, and relate geometric rank to the analytic rank of Gowers and Wolf in an asymptotic fashion. As a first application, we use geometric rank to prove a tight upper bound on the (border) subrank of the matrix multiplication tensors, matching Strassen's well-known lower bound from 1987.
机构:
Univ Milan, Dipartimento Matemat F Enriques, Via Saldini 50, I-20133 Milan, ItalyUniv Milan, Dipartimento Matemat F Enriques, Via Saldini 50, I-20133 Milan, Italy
Bertolini, Marina
Besana, Gianmario
论文数: 0引用数: 0
h-index: 0
机构:
DePaul Univ, Coll Comp & Digital Media, 243 South Wabash, Chicago, IL 60604 USAUniv Milan, Dipartimento Matemat F Enriques, Via Saldini 50, I-20133 Milan, Italy
Besana, Gianmario
Bini, Gilberto
论文数: 0引用数: 0
h-index: 0
机构:
Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, ItalyUniv Milan, Dipartimento Matemat F Enriques, Via Saldini 50, I-20133 Milan, Italy
Bini, Gilberto
Turrini, Cristina
论文数: 0引用数: 0
h-index: 0
机构:
Univ Milan, Dipartimento Matemat F Enriques, Via Saldini 50, I-20133 Milan, ItalyUniv Milan, Dipartimento Matemat F Enriques, Via Saldini 50, I-20133 Milan, Italy