Geometric Rank of Tensors and Subrank of Matrix Multiplication

被引:3
|
作者
Kopparty, Swastik [1 ]
Moshkovitz, Guy [2 ,3 ]
Zuiddam, Jeroen [4 ]
机构
[1] Univ Toronto, Toronto, ON, Canada
[2] CUNY, Baruch Coll, New York, NY USA
[3] CUNY, Grad Ctr, New York, NY USA
[4] Univ Amsterdam, Amsterdam, Netherlands
基金
美国国家科学基金会;
关键词
algebraic complexity theory; combinatorics; matrix multiplication; tensors; subrank; analytic rank; slice rank; hypergraphs; independence number; COMPLEXITY;
D O I
10.19086/da.73322
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by problems in algebraic complexity theory (e.g., matrix multiplica-tion) and extremal combinatorics (e.g., the cap set problem and the sunflower problem), we introduce the geometric rank as a new tool in the study of tensors and hypergraphs. We prove that the geometric rank is an upper bound on the subrank of tensors and the independence number of hypergraphs. We prove that the geometric rank is smaller than the slice rank of Tao, and relate geometric rank to the analytic rank of Gowers and Wolf in an asymptotic fashion. As a first application, we use geometric rank to prove a tight upper bound on the (border) subrank of the matrix multiplication tensors, matching Strassen's well-known lower bound from 1987.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [41] Diagrams, Tensors and Geometric Reasoning
    Richter-Gebert, Juergen
    Lebmeir, Peter
    DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 42 (02) : 305 - 334
  • [42] A GEOMETRIC DESCRIPTION OF THE SETS OF PALINDROMIC AND ALTERNATING MATRIX PENCILS WITH BOUNDED RANK
    De Teran, Fernando
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2018, 39 (03) : 1116 - 1134
  • [43] Diagrams, Tensors and Geometric Reasoning
    Jürgen Richter-Gebert
    Peter Lebmeir
    Discrete & Computational Geometry, 2009, 42 : 305 - 334
  • [44] Comparison of a subrank to a full-rank time-reversal operator in a dynamic ocean
    Edelmann, Geoffrey F.
    Lingevitch, Joseph F.
    Gaumond, Charles F.
    Fromm, David M.
    Calvo, David C.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2007, 122 (05): : 2706 - 2714
  • [45] Multiplication algorithm in a finite field and tensor rank of the multiplication
    Ballet, R
    Rolland, R
    JOURNAL OF ALGEBRA, 2004, 272 (01) : 173 - 185
  • [46] Concise tensors of minimal border rank
    Joachim Jelisiejew
    J. M. Landsberg
    Arpan Pal
    Mathematische Annalen, 2024, 388 : 2473 - 2517
  • [47] Minimality of tensors of fixed multilinear rank
    Heaton, Alexander
    Kozhasov, Khazhgali
    Venturello, Lorenzo
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (08): : 1364 - 1377
  • [48] Adaptive Low Rank Approximation for Tensors
    Wang, Xiaofei
    Navasca, Carmeliza
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, : 939 - 945
  • [49] Identifiability of Rank-3 Tensors
    Ballico, Edoardo
    Bernardi, Alessandra
    Santarsiero, Pierpaola
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (04)
  • [50] The Analytic Rank of Tensors and Its Applications
    Lovett, Shachar
    DISCRETE ANALYSIS, 2019,