The volume-preserving Willmore flow

被引:8
|
作者
Rupp, Fabian [1 ,2 ]
机构
[1] Ulm Univ, Inst Appl Anal, Helmholtzstr 18, D-89081 Ulm, Germany
[2] Univ Vienna, Fac Math, Oskar-Morgenstern-Pl 1, A-1090 Vienna, Austria
关键词
Willmore flow; Fixed volume; Blow-up; Lojasiewicz-Simon inequality; Nonlocal geometric evolution equation; GRADIENT FLOW; ELASTIC CURVES; FINITE-TIME; SINGULARITIES; THEOREM; SURFACES;
D O I
10.1016/j.na.2023.113220
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a closed surface in R3 evolving by the volume-preserving Willmore flow and prove a lower bound for the existence time of smooth solutions. For spherical initial surfaces with Willmore energy below 8 pi we show long time existence and convergence to a round sphere by performing a suitable blow-up and by proving a constrained Lojasiewicz-Simon inequality.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] Bifurcations in Volume-Preserving Systems
    Henk W. Broer
    Heinz Hanßmann
    Acta Applicandae Mathematicae, 2019, 162 : 3 - 32
  • [32] Volume-preserving space deformation
    Universite Louis Pasteur-Departement, Informatique, Strasbourg, France
    Comput Graphics (Pergamon), 5 (625-639):
  • [33] ON THE GROUP OF VOLUME-PRESERVING DIFFEOMORPHISMS
    ISMAGILOV, RS
    MATHEMATICS OF THE USSR-IZVESTIYA, 1981, 17 (01): : 95 - 127
  • [34] Complete bounded λ-hypersurfaces in the weighted volume-preserving mean curvature flow
    Yecheng Zhu
    Yi Fang
    Qing Chen
    ScienceChina(Mathematics), 2018, 61 (05) : 929 - 942
  • [35] Behaviour of singularities of the rotationally symmetric, volume-preserving mean curvature flow
    Athanassenas, M
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 17 (01) : 1 - 16
  • [36] Behaviour of singularities of the rotationally symmetric, volume-preserving mean curvature flow
    M. Athanassenas
    Calculus of Variations and Partial Differential Equations, 2003, 17 : 1 - 16
  • [37] Complete bounded λ-hypersurfaces in the weighted volume-preserving mean curvature flow
    Yecheng Zhu
    Yi Fang
    Qing Chen
    Science China Mathematics, 2018, 61 : 929 - 942
  • [38] Complete bounded λ-hypersurfaces in the weighted volume-preserving mean curvature flow
    Zhu, Yecheng
    Fang, Yi
    Chen, Qing
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (05) : 929 - 942
  • [39] General Volume-Preserving Mechanical Systems
    Bin Zhou
    Han-Ying Guo
    Ke Wu
    Letters in Mathematical Physics, 2003, 64 : 235 - 243
  • [40] VOLUME-PRESERVING SCHEMES AND NUMERICAL EXPERIMENTS
    QIN, MZ
    ZHU, WJ
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1993, 26 (04) : 33 - 42