Complete bounded λ-hypersurfaces in the weighted volume-preserving mean curvature flow

被引:7
|
作者
Zhu, Yecheng [1 ,2 ]
Fang, Yi [2 ]
Chen, Qing [1 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
[2] Anhui Univ Technol, Dept Appl Math, Maanshan 243002, Peoples R China
基金
中国国家自然科学基金;
关键词
volume comparison theorem; topology; second fundamental form; 8-Bakry-Emery Ricci tensor; mean curvature flow; SINGULARITIES; TENSOR;
D O I
10.1007/s11425-016-9020-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the complete bounded lambda-hypersurfaces in the weighted volume-preserving mean curvature flow. Firstly, we investigate the volume comparison theorem of complete bounded lambda-hypersurfaces with |A| a (c) 1/2 alpha and get some applications of the volume comparison theorem. Secondly, we consider the relation among lambda, extrinsic radius k, intrinsic diameter d, and dimension n of the complete lambda hypersurface, and we obtain some estimates for the intrinsic diameter and the extrinsic radius. At last, we get some topological properties of the bounded lambda-hypersurface with some natural and general restrictions.
引用
收藏
页码:929 / 942
页数:14
相关论文
共 50 条
  • [1] Complete bounded λ-hypersurfaces in the weighted volume-preserving mean curvature flow
    Yecheng Zhu
    Yi Fang
    Qing Chen
    ScienceChina(Mathematics), 2018, 61 (05) : 929 - 942
  • [2] Complete bounded λ-hypersurfaces in the weighted volume-preserving mean curvature flow
    Yecheng Zhu
    Yi Fang
    Qing Chen
    Science China Mathematics, 2018, 61 : 929 - 942
  • [3] Complete λ-hypersurfaces of weighted volume-preserving mean curvature flow
    Cheng, Qing-Ming
    Wei, Guoxin
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
  • [4] CLASSIFICATION AND RIGIDITY OF λ-HYPERSURFACES IN THE WEIGHTED VOLUME-PRESERVING MEAN CURVATURE FLOW
    Zhu, Yecheng
    Chen, Qing
    HOUSTON JOURNAL OF MATHEMATICS, 2019, 45 (04): : 1037 - 1053
  • [5] Volume-preserving mean curvature flow of hypersurfaces in space forms
    Xu, Hongwei
    Leng, Yan
    Zhao, Entao
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2014, 25 (03)
  • [6] Volume-preserving nonhomogeneous mean curvature flow of convex hypersurfaces
    Bertini, Maria Chiara
    Sinestrari, Carlo
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (04) : 1295 - 1309
  • [7] Volume-preserving nonhomogeneous mean curvature flow of convex hypersurfaces
    Maria Chiara Bertini
    Carlo Sinestrari
    Annali di Matematica Pura ed Applicata (1923 -), 2018, 197 : 1295 - 1309
  • [8] Volume-preserving mean curvature flow of revolution hypersurfaces in a Rotationally Symmetric Space
    Esther Cabezas-Rivas
    Vicente Miquel
    Mathematische Zeitschrift, 2009, 261 : 489 - 510
  • [9] Volume-preserving mean curvature flow of revolution hypersurfaces in a Rotationally Symmetric Space
    Cabezas-Rivas, Esther
    Miquel, Vicente
    MATHEMATISCHE ZEITSCHRIFT, 2009, 261 (03) : 489 - 510
  • [10] On volume-preserving crystalline mean curvature flow
    Kim, Inwon
    Kwon, Dohyun
    Pozar, Norbert
    MATHEMATISCHE ANNALEN, 2022, 384 (1-2) : 733 - 774