The volume-preserving Willmore flow

被引:8
|
作者
Rupp, Fabian [1 ,2 ]
机构
[1] Ulm Univ, Inst Appl Anal, Helmholtzstr 18, D-89081 Ulm, Germany
[2] Univ Vienna, Fac Math, Oskar-Morgenstern-Pl 1, A-1090 Vienna, Austria
关键词
Willmore flow; Fixed volume; Blow-up; Lojasiewicz-Simon inequality; Nonlocal geometric evolution equation; GRADIENT FLOW; ELASTIC CURVES; FINITE-TIME; SINGULARITIES; THEOREM; SURFACES;
D O I
10.1016/j.na.2023.113220
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a closed surface in R3 evolving by the volume-preserving Willmore flow and prove a lower bound for the existence time of smooth solutions. For spherical initial surfaces with Willmore energy below 8 pi we show long time existence and convergence to a round sphere by performing a suitable blow-up and by proving a constrained Lojasiewicz-Simon inequality.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:30
相关论文
共 50 条
  • [41] Spherical volume-preserving Demons registration
    Chen, Xuejiao
    Hu, Jiaxi
    He, Huiguang
    Hua, Jing
    COMPUTER-AIDED DESIGN, 2015, 58 : 99 - 104
  • [42] Weak-strong uniqueness for volume-preserving mean curvature flow
    Laux, Tim
    REVISTA MATEMATICA IBEROAMERICANA, 2024, 40 (01) : 93 - 110
  • [43] CLASSIFICATION AND RIGIDITY OF λ-HYPERSURFACES IN THE WEIGHTED VOLUME-PRESERVING MEAN CURVATURE FLOW
    Zhu, Yecheng
    Chen, Qing
    HOUSTON JOURNAL OF MATHEMATICS, 2019, 45 (04): : 1037 - 1053
  • [44] The trunkenness of a volume-preserving vector field
    Rechtman, Ana
    Dehornoy, Pierre
    NONLINEARITY, 2017, 30 (11) : 4089 - 4110
  • [45] Adiabatic invariance in volume-preserving systems
    Neishtadt, Anatoly
    Vainchtein, Dmitri
    Vasiliev, Alexei
    IUTAM SYMPOSIUM ON HAMILTONIAN DYNAMICS, VORTEX STRUCTURES, TURBULENCE, 2008, 6 : 89 - 107
  • [46] Volume-preserving diffeomorphisms with inverse shadowing
    Manseob Lee
    Journal of Inequalities and Applications, 2012
  • [47] HIGHER TORI IN VOLUME-PRESERVING MAPS
    BAIER, G
    KLEIN, M
    ROSSLER, OE
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1990, 45 (05): : 664 - 668
  • [50] Diffusion and drift in volume-preserving maps
    Nathan Guillery
    James D. Meiss
    Regular and Chaotic Dynamics, 2017, 22 : 700 - 720