The volume-preserving Willmore flow

被引:8
|
作者
Rupp, Fabian [1 ,2 ]
机构
[1] Ulm Univ, Inst Appl Anal, Helmholtzstr 18, D-89081 Ulm, Germany
[2] Univ Vienna, Fac Math, Oskar-Morgenstern-Pl 1, A-1090 Vienna, Austria
关键词
Willmore flow; Fixed volume; Blow-up; Lojasiewicz-Simon inequality; Nonlocal geometric evolution equation; GRADIENT FLOW; ELASTIC CURVES; FINITE-TIME; SINGULARITIES; THEOREM; SURFACES;
D O I
10.1016/j.na.2023.113220
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a closed surface in R3 evolving by the volume-preserving Willmore flow and prove a lower bound for the existence time of smooth solutions. For spherical initial surfaces with Willmore energy below 8 pi we show long time existence and convergence to a round sphere by performing a suitable blow-up and by proving a constrained Lojasiewicz-Simon inequality.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Global solutions to the volume-preserving mean-curvature flow
    Mugnai, Luca
    Seis, Christian
    Spadaro, Emanuele
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (01) : 1 - 23
  • [22] Volume-preserving nonhomogeneous mean curvature flow of convex hypersurfaces
    Maria Chiara Bertini
    Carlo Sinestrari
    Annali di Matematica Pura ed Applicata (1923 -), 2018, 197 : 1295 - 1309
  • [23] Volume-preserving mean curvature flow of rotationally symmetric surfaces
    Athanassenas, M
    COMMENTARII MATHEMATICI HELVETICI, 1997, 72 (01) : 52 - 66
  • [24] Global solutions to the volume-preserving mean-curvature flow
    Luca Mugnai
    Christian Seis
    Emanuele Spadaro
    Calculus of Variations and Partial Differential Equations, 2016, 55
  • [25] Hyperbolicity in the volume-preserving scenario
    Arbieto, Alexander
    Catalan, Thiago
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2013, 33 : 1644 - 1666
  • [26] A volume-preserving splitting theorem
    Fronville, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (09): : 857 - 860
  • [27] Bifurcations in Volume-Preserving Systems
    Broer, Henk W.
    Hanssmann, Heinz
    ACTA APPLICANDAE MATHEMATICAE, 2019, 162 (01) : 3 - 32
  • [28] CONVERGENCE OF AXIALLY SYMMETRIC VOLUME-PRESERVING MEAN CURVATURE FLOW
    Athanassenas, Maria
    Kandanaarachchi, Sevvandi
    PACIFIC JOURNAL OF MATHEMATICS, 2012, 259 (01) : 41 - 54
  • [29] Complete λ-hypersurfaces of weighted volume-preserving mean curvature flow
    Cheng, Qing-Ming
    Wei, Guoxin
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
  • [30] On the Volume-Preserving Procrustes Problem
    黄建国
    沐建飞
    周解勇
    Journal of Shanghai University, 2004, (04) : 459 - 465