Gaussian Process and Deep Learning Atmospheric Correction

被引:2
|
作者
Basener, Bill [1 ]
Basener, Abigail [2 ]
机构
[1] Univ Virginia, Sch Data Sci, Dept Syst & Informat Engn, Charlottesville, VA 22904 USA
[2] Virginia Mil Inst, Appl Math, Lexington, VA 24450 USA
关键词
atmospheric compensation; Gaussian process; hyperspectral;
D O I
10.3390/rs15030649
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Atmospheric correction is the processes of converting radiance values measured at a spectral sensor to the reflectance values of the materials in a multispectral or hyperspectral image. This is an important step for detecting or identifying the materials present in the pixel spectra. We present two machine learning models for atmospheric correction trained and tested on 100,000 batches of 40 reflectance spectra converted to radiance using MODTRAN, so the machine learning model learns the radiative transfer physics from MODTRAN. We created a theoretically interpretable Bayesian Gaussian process model and a deep learning autoencoder treating the atmosphere as noise. We compare both methods for estimating gain in the correction model to process for estimating gain within the well-know QUAC method which assumes a constant mean endmember reflectance. Prediction of reflectance using the Gaussian process model outperforms the other methods in terms of both accuracy and reliability.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Automated Assessment of Bone Age Using Deep Learning and Gaussian Process Regression
    Van Steenkiste, Tom
    Ruyssinck, Joeri
    Janssens, Olivier
    Vandersmissen, Baptist
    Vandecasteele, Florian
    Devolder, Pieter
    Achten, Eric
    Van Hoecke, Sofie
    Deschrijver, Dirk
    Dhaene, Tom
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 674 - 677
  • [22] Prediction of Reward Functions for Deep Reinforcement Learning via Gaussian Process Regression
    Lim, Jaehyun
    Ha, Seungchul
    Choi, Jongeun
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2020, 25 (04) : 1739 - 1746
  • [23] Hybrid Deep Learning Gaussian Process for Diabetic Retinopathy Diagnosis and Uncertainty Quantification
    Toledo-Cortes, Santiago
    de la Pava, Melissa
    Perdomo, Oscar
    Gonzalez, Fabio A.
    OPHTHALMIC MEDICAL IMAGE ANALYSIS, OMIA 2020, 2020, 12069 : 206 - 215
  • [24] Gaussian correction for adversarial learning of boundaries
    Chaturvedi, Iti
    Chen, Qian
    Welsch, Roy E.
    Thapa, Kishor
    Cambria, Erik
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2022, 109
  • [25] Stacked Gaussian Process Learning
    Neumann, Marion
    Kersting, Kristian
    Xu, Zhao
    Schulz, Daniel
    2009 9TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2009, : 387 - +
  • [26] A Deep-Learning-Based Error-Correction Method for Atmospheric Motion Vectors
    Cao, Hang
    Leng, Hongze
    Zhao, Jun
    Zhao, Yanlai
    Zhao, Chengwu
    Li, Baoxu
    REMOTE SENSING, 2024, 16 (09)
  • [27] Deep Learning Based Emulation of Radiative Transfer Code for Atmospheric Correction of Satellite Images
    Jasso-Garduno, Arturo Enrique
    Munoz-Maximo, Ignacio
    Pinto, David
    Ramirez-Cortes, Juan Manuel
    COMPUTACION Y SISTEMAS, 2024, 28 (04): : 2327 - 2341
  • [28] Sequential Inference for Deep Gaussian Process
    Wang, Yali
    Brubaker, Marcus
    Chaib-draa, Brahim
    Urtasun, Raquel
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 694 - 703
  • [29] Image Matting With Deep Gaussian Process
    Zheng, Yuanjie
    Yang, Yunshuai
    Che, Tongtong
    Hou, Sujuan
    Huang, Wenhui
    Gao, Yue
    Tan, Ping
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) : 8879 - 8893
  • [30] Identification of Atmospheric Variable Using Deep Gaussian Processes
    Jancic, Mitja
    Kocijan, Jus
    Grasic, Bostjan
    IFAC PAPERSONLINE, 2018, 51 (05): : 43 - 48