Gaussian Process and Deep Learning Atmospheric Correction

被引:2
|
作者
Basener, Bill [1 ]
Basener, Abigail [2 ]
机构
[1] Univ Virginia, Sch Data Sci, Dept Syst & Informat Engn, Charlottesville, VA 22904 USA
[2] Virginia Mil Inst, Appl Math, Lexington, VA 24450 USA
关键词
atmospheric compensation; Gaussian process; hyperspectral;
D O I
10.3390/rs15030649
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Atmospheric correction is the processes of converting radiance values measured at a spectral sensor to the reflectance values of the materials in a multispectral or hyperspectral image. This is an important step for detecting or identifying the materials present in the pixel spectra. We present two machine learning models for atmospheric correction trained and tested on 100,000 batches of 40 reflectance spectra converted to radiance using MODTRAN, so the machine learning model learns the radiative transfer physics from MODTRAN. We created a theoretically interpretable Bayesian Gaussian process model and a deep learning autoencoder treating the atmosphere as noise. We compare both methods for estimating gain in the correction model to process for estimating gain within the well-know QUAC method which assumes a constant mean endmember reflectance. Prediction of reflectance using the Gaussian process model outperforms the other methods in terms of both accuracy and reliability.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Gaussian Process Convolutional Dictionary Learning
    Song, Andrew H.
    Tolooshams, Bahareh
    Ba, Demba
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 95 - 99
  • [42] Inverse Reinforcement Learning with Gaussian Process
    Qiao, Qifeng
    Beling, Peter A.
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 113 - 118
  • [43] Gaussian process approach for metric learning
    Li, Ping
    Chen, Songcan
    PATTERN RECOGNITION, 2019, 87 : 17 - 28
  • [44] Actively Learning Gaussian Process Dynamics
    Buisson-Fenet, Mona
    Solowjow, Friedrich
    Trimpe, Sebastian
    LEARNING FOR DYNAMICS AND CONTROL, VOL 120, 2020, 120 : 5 - 15
  • [45] Gaussian process learning of nonlinear dynamics
    Ye, Dongwei
    Guo, Mengwu
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 138
  • [46] Deep Gaussian Process autoencoders for novelty detection
    Rémi Domingues
    Pietro Michiardi
    Jihane Zouaoui
    Maurizio Filippone
    Machine Learning, 2018, 107 : 1363 - 1383
  • [47] Fast deep mixtures of Gaussian process experts
    Clement Etienam
    Kody J. H. Law
    Sara Wade
    Vitaly Zankin
    Machine Learning, 2024, 113 : 1483 - 1508
  • [48] Deep Gaussian Process autoencoders for novelty detection
    Domingues, Remi
    Michiardi, Pietro
    Zouaoui, Jihane
    Filippone, Maurizio
    MACHINE LEARNING, 2018, 107 (8-10) : 1363 - 1383
  • [49] A Deep Gaussian Process Approach for Predictive Maintenance
    Zeng, Junqi
    Liang, Zhenglin
    IEEE TRANSACTIONS ON RELIABILITY, 2023, 72 (03) : 916 - 933
  • [50] Fast deep mixtures of Gaussian process experts
    Etienam, Clement
    Law, Kody J. H.
    Wade, Sara
    Zankin, Vitaly
    MACHINE LEARNING, 2024, 113 (03) : 1483 - 1508