Gaussian Process and Deep Learning Atmospheric Correction

被引:2
|
作者
Basener, Bill [1 ]
Basener, Abigail [2 ]
机构
[1] Univ Virginia, Sch Data Sci, Dept Syst & Informat Engn, Charlottesville, VA 22904 USA
[2] Virginia Mil Inst, Appl Math, Lexington, VA 24450 USA
关键词
atmospheric compensation; Gaussian process; hyperspectral;
D O I
10.3390/rs15030649
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Atmospheric correction is the processes of converting radiance values measured at a spectral sensor to the reflectance values of the materials in a multispectral or hyperspectral image. This is an important step for detecting or identifying the materials present in the pixel spectra. We present two machine learning models for atmospheric correction trained and tested on 100,000 batches of 40 reflectance spectra converted to radiance using MODTRAN, so the machine learning model learns the radiative transfer physics from MODTRAN. We created a theoretically interpretable Bayesian Gaussian process model and a deep learning autoencoder treating the atmosphere as noise. We compare both methods for estimating gain in the correction model to process for estimating gain within the well-know QUAC method which assumes a constant mean endmember reflectance. Prediction of reflectance using the Gaussian process model outperforms the other methods in terms of both accuracy and reliability.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Deep Learning for the Gaussian Wiretap Channel
    Fritschek, Rick
    Schaefer, Rafael F.
    Wunder, Gerhard
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [32] Gaussian Process based Deep Dyna-Q Approach for Dialogue Policy Learning
    Wu, Guanlin
    Fang, Wenqi
    Wang, Ji
    Cao, Jiang
    Bao, Weidong
    Ping, Yang
    Zhu, Xiaomin
    Wang, Zheng
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 1786 - 1795
  • [33] Pseudo-Labeling Using Gaussian Process for Semi-supervised Deep Learning
    Li, Zhun
    Ko, ByungSoo
    Choi, Hojin
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2018, : 263 - 269
  • [34] RGBD Sensors Correction with Gaussian Process Regression
    Amamra, Abdenour
    Aouf, Nabil
    2014 56TH INTERNATIONAL SYMPOSIUM ELMAR (ELMAR), 2014, : 159 - 162
  • [35] Atmospheric Turbulence Compensation Based on Deep Learning to Correct Distorted Composite Bessel-Gaussian Beam
    Du, Qianqian
    Wei, Hongyan
    Shi, Chenyin
    Xue, Xiaolei
    Jia, Peng
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2023, 50 (22):
  • [36] Video Variational Deep Atmospheric Turbulence Correction
    Lopez-Tapia, Santiago
    Wang, Xijun
    Katsaggelos, Aggelos K.
    IEEE ACCESS, 2024, 12 : 127368 - 127379
  • [37] VARIATIONAL DEEP ATMOSPHERIC TURBULENCE CORRECTION FOR VIDEO
    Lopez-Tapia, Santiago
    Wang, Xijun
    Katsaggelos, Aggelos K.
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 3568 - 3572
  • [38] Predicting groundwater depth fluctuations using deep learning, extreme learning machine and Gaussian process: a comparative study
    Kumar, Deepak
    Roshni, Thendiyath
    Singh, Anshuman
    Jha, Madan Kumar
    Samui, Pijush
    EARTH SCIENCE INFORMATICS, 2020, 13 (04) : 1237 - 1250
  • [39] Predicting groundwater depth fluctuations using deep learning, extreme learning machine and Gaussian process: a comparative study
    Deepak Kumar
    Thendiyath Roshni
    Anshuman Singh
    Madan Kumar Jha
    Pijush Samui
    Earth Science Informatics, 2020, 13 : 1237 - 1250
  • [40] Online Updating for Gaussian Process Learning
    Su, Hongjun
    Zhang, Hong
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2017, : 180 - 183