Identification of Atmospheric Variable Using Deep Gaussian Processes

被引:3
|
作者
Jancic, Mitja [1 ]
Kocijan, Jus [1 ,2 ]
Grasic, Bostjan [3 ]
机构
[1] Jozef Stefan Inst, Ljubljana, Slovenia
[2] Univ Nova Gorica, Nova Gorica, Slovenia
[3] MEIS Doo, Smarje Sap, Slovenia
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 05期
关键词
System identification; deep Gaussian Processes; atmospheric temperature; big data;
D O I
10.1016/j.ifacol.2018.06.197
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mathematical and physical modelling only provide an approximate description of the true nature of a dynamic system. The higher the accuracy of the model, the more likely it becomes analytically intractable; therefore, empirical models or black box models are used. When dynamic systems are considered as black box models, almost no prior knowledge about the system is considered. Deep Gaussian Processes, which use hierarchical structure to provide adequate identification of very complex systems, can be used to identify the mapping between the system input and output values. With the given mapping function, we can provide one-step ahead prediction of the system output values together with its uncertainty, which can be used advantageously. In this paper, we use deep Gaussian Processes to identify a dynamic system and evaluate the method empirically. In the illustrative case, we study one-step-ahead prediction of air temperature in the atmospheric surface layer. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:43 / 48
页数:6
相关论文
共 50 条
  • [1] Detecting Causality using Deep Gaussian Processes
    Feng, Guanchao
    Quirk, J. Gerald
    Djuric, Petar M.
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 472 - 476
  • [2] nnSVG for the scalable identification of spatially variable genes using nearest-neighbor Gaussian processes
    Weber, Lukas M.
    Saha, Arkajyoti
    Datta, Abhirup
    Hansen, Kasper D.
    Hicks, Stephanie C.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [3] nnSVG for the scalable identification of spatially variable genes using nearest-neighbor Gaussian processes
    Lukas M. Weber
    Arkajyoti Saha
    Abhirup Datta
    Kasper D. Hansen
    Stephanie C. Hicks
    Nature Communications, 14
  • [4] Efficient Global Optimization using Deep Gaussian Processes
    Hebbal, Ali
    Brevault, Loic
    Balesdent, Mathieu
    Talbi, El-Ghazali
    Melab, Nouredine
    2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 2625 - 2632
  • [5] Hierarchical Deep Gaussian Processes Latent Variable Model via Expectation Propagation
    Taubert, Nick
    Giese, Martin A.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT III, 2021, 12893 : 317 - 329
  • [6] How deep are deep Gaussian processes?
    Dunlop, Matthew M.
    Girolami, Mark A.
    Stuart, Andrew M.
    Teckentrup, Aretha L.
    Journal of Machine Learning Research, 2018, 19 : 1 - 46
  • [7] How Deep Are Deep Gaussian Processes?
    Dunlop, Matthew M.
    Girolami, Mark A.
    Stuart, Andrew M.
    Teckentrup, Aretha L.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 19
  • [8] Deep recurrent Gaussian processes for outlier-robust system identification
    Mattos, Cesar Lincoln C.
    Dai, Zhenwen
    Damianou, Andreas
    Barreto, Guilherme A.
    Lawrence, Neil D.
    JOURNAL OF PROCESS CONTROL, 2017, 60 : 82 - 94
  • [9] Thin and Deep Gaussian Processes
    de Souza, Daniel Augusto
    Nikitin, Alexander
    John, S. T.
    Ross, Magnus
    Alvarez, Mauricio A.
    Deisenroth, Marc Peter
    Gomes, Joao P. P.
    Mesquita, Diego
    Mattos, Cesar Lincoln C.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [10] Deep Convolutional Gaussian Processes
    Blomqvist, Kenneth
    Kaski, Samuel
    Heinonen, Markus
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT II, 2020, 11907 : 582 - 597