Identification of Atmospheric Variable Using Deep Gaussian Processes

被引:3
|
作者
Jancic, Mitja [1 ]
Kocijan, Jus [1 ,2 ]
Grasic, Bostjan [3 ]
机构
[1] Jozef Stefan Inst, Ljubljana, Slovenia
[2] Univ Nova Gorica, Nova Gorica, Slovenia
[3] MEIS Doo, Smarje Sap, Slovenia
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 05期
关键词
System identification; deep Gaussian Processes; atmospheric temperature; big data;
D O I
10.1016/j.ifacol.2018.06.197
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mathematical and physical modelling only provide an approximate description of the true nature of a dynamic system. The higher the accuracy of the model, the more likely it becomes analytically intractable; therefore, empirical models or black box models are used. When dynamic systems are considered as black box models, almost no prior knowledge about the system is considered. Deep Gaussian Processes, which use hierarchical structure to provide adequate identification of very complex systems, can be used to identify the mapping between the system input and output values. With the given mapping function, we can provide one-step ahead prediction of the system output values together with its uncertainty, which can be used advantageously. In this paper, we use deep Gaussian Processes to identify a dynamic system and evaluate the method empirically. In the illustrative case, we study one-step-ahead prediction of air temperature in the atmospheric surface layer. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:43 / 48
页数:6
相关论文
共 50 条
  • [41] Multi-view Deep Gaussian Processes
    Sun, Shiliang
    Liu, Qiuyang
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT I, 2018, 11301 : 130 - 139
  • [42] Deep Gaussian Processes for Estimating Music Mood
    Chapaneri, Santosh
    Jayaswal, Deepak
    IEEE INDICON: 15TH IEEE INDIA COUNCIL INTERNATIONAL CONFERENCE, 2018,
  • [43] Convolutional Normalizing Flows for Deep Gaussian Processes
    Yu, Haibin
    Liu, Dapeng
    Low, Bryan Kian Hsiang
    Jaillet, Patrick
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [44] Monotonic warpings for additive and deep Gaussian processes
    Barnett, Steven D.
    Beesley, Lauren J.
    Booth, Annie S.
    Gramacy, Robert B.
    Osthus, Dave
    STATISTICS AND COMPUTING, 2025, 35 (03)
  • [45] Asymmetric Transfer Learning with Deep Gaussian Processes
    Kandemir, Melih
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 730 - 738
  • [46] Deep state-space Gaussian processes
    Zheng Zhao
    Muhammad Emzir
    Simo Särkkä
    Statistics and Computing, 2021, 31
  • [47] Evaluation of Deep Gaussian Processes for Text Classification
    Jayashree, P.
    Srijith, P. K.
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), 2020, : 1485 - 1491
  • [48] DEEP GAUSSIAN PROCESSES FOR GEOPHYSICAL PARAMETER RETRIEVAL
    Heestermans Svendsen, Daniel
    Morales-Alvarez, Pablo
    Molina, Rafael
    Camps-Valls, Gustau
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6175 - 6178
  • [49] Random Feature Expansions for Deep Gaussian Processes
    Cutajar, Kurt
    Bonilla, Edwin, V
    Michiardi, Pietro
    Filippone, Maurizio
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [50] Deep state-space Gaussian processes
    Zhao, Zheng
    Emzir, Muhammad
    Sarkka, Simo
    STATISTICS AND COMPUTING, 2021, 31 (06)