Identification of Atmospheric Variable Using Deep Gaussian Processes

被引:3
|
作者
Jancic, Mitja [1 ]
Kocijan, Jus [1 ,2 ]
Grasic, Bostjan [3 ]
机构
[1] Jozef Stefan Inst, Ljubljana, Slovenia
[2] Univ Nova Gorica, Nova Gorica, Slovenia
[3] MEIS Doo, Smarje Sap, Slovenia
来源
IFAC PAPERSONLINE | 2018年 / 51卷 / 05期
关键词
System identification; deep Gaussian Processes; atmospheric temperature; big data;
D O I
10.1016/j.ifacol.2018.06.197
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mathematical and physical modelling only provide an approximate description of the true nature of a dynamic system. The higher the accuracy of the model, the more likely it becomes analytically intractable; therefore, empirical models or black box models are used. When dynamic systems are considered as black box models, almost no prior knowledge about the system is considered. Deep Gaussian Processes, which use hierarchical structure to provide adequate identification of very complex systems, can be used to identify the mapping between the system input and output values. With the given mapping function, we can provide one-step ahead prediction of the system output values together with its uncertainty, which can be used advantageously. In this paper, we use deep Gaussian Processes to identify a dynamic system and evaluate the method empirically. In the illustrative case, we study one-step-ahead prediction of air temperature in the atmospheric surface layer. (C) 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:43 / 48
页数:6
相关论文
共 50 条
  • [31] Dynamic systems identification with Gaussian processes
    Kocijan, J
    Girard, A
    Banko, B
    Murray-Smith, R
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2005, 11 (04) : 411 - 424
  • [32] IDENTIFICATION OF ELLIPTIC GAUSSIAN-PROCESSES
    BENASSI, A
    COHEN, S
    JAFFARD, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (08): : 877 - 880
  • [33] Forward model emulator for atmospheric radiative transfer using Gaussian processes and cross validation
    Lamminpaa, Otto
    Susiluoto, Jouni
    Hobbs, Jonathan
    Mcduffie, James
    Braverman, Amy
    Owhadi, Houman
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2025, 18 (03) : 673 - 694
  • [34] Gaussian mixture deep dynamic latent variable model with application to soft sensing for multimode industrial processes
    Xu, Jingyun
    Cai, Zhiduan
    APPLIED SOFT COMPUTING, 2022, 114
  • [35] Calibration of atmospheric density model based on Gaussian Processes
    Gao, Tianyu
    Peng, Hao
    Bai, Xiaoli
    ACTA ASTRONAUTICA, 2020, 168 : 273 - 281
  • [36] Bayesian optimization using deep Gaussian processes with applications to aerospace system design
    Hebbal, Ali
    Brevault, Loic
    Balesdent, Mathieu
    Talbi, El-Ghazali
    Melab, Nouredine
    OPTIMIZATION AND ENGINEERING, 2021, 22 (01) : 321 - 361
  • [37] Bayesian optimization using deep Gaussian processes with applications to aerospace system design
    Ali Hebbal
    Loïc Brevault
    Mathieu Balesdent
    El-Ghazali Talbi
    Nouredine Melab
    Optimization and Engineering, 2021, 22 : 321 - 361
  • [38] Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo
    Havasi, Marton
    Hernandez-Lobato, Jose Miguel
    Jose Murillo-Fuentes, Juan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [39] Time Variable Stress Inversion of Centroid Moment Tensor Data Using Gaussian Processes
    Okazaki, Tomohisa
    Fukahata, Yukitoshi
    Ueda, Naonori
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2022, 127 (09)
  • [40] Deep Neural Networks as Point Estimates for Deep Gaussian Processes
    Dutordoir, Vincent
    Hensman, James
    van der wilk, Mark
    Ek, Carl Henrik
    Ghahramani, Zoubin
    Durrande, Nicolas
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34