Gaussian Process and Deep Learning Atmospheric Correction

被引:2
|
作者
Basener, Bill [1 ]
Basener, Abigail [2 ]
机构
[1] Univ Virginia, Sch Data Sci, Dept Syst & Informat Engn, Charlottesville, VA 22904 USA
[2] Virginia Mil Inst, Appl Math, Lexington, VA 24450 USA
关键词
atmospheric compensation; Gaussian process; hyperspectral;
D O I
10.3390/rs15030649
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Atmospheric correction is the processes of converting radiance values measured at a spectral sensor to the reflectance values of the materials in a multispectral or hyperspectral image. This is an important step for detecting or identifying the materials present in the pixel spectra. We present two machine learning models for atmospheric correction trained and tested on 100,000 batches of 40 reflectance spectra converted to radiance using MODTRAN, so the machine learning model learns the radiative transfer physics from MODTRAN. We created a theoretically interpretable Bayesian Gaussian process model and a deep learning autoencoder treating the atmosphere as noise. We compare both methods for estimating gain in the correction model to process for estimating gain within the well-know QUAC method which assumes a constant mean endmember reflectance. Prediction of reflectance using the Gaussian process model outperforms the other methods in terms of both accuracy and reliability.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Manifold learning by a deep Gaussian process autoencoder
    Francesco Camastra
    Angelo Casolaro
    Gennaro Iannuzzo
    Neural Computing and Applications, 2023, 35 : 15573 - 15582
  • [2] Active Learning for Deep Gaussian Process Surrogates
    Sauer, Annie
    Gramacy, Robert B.
    Higdon, David
    TECHNOMETRICS, 2023, 65 (01) : 4 - 18
  • [3] Manifold learning by a deep Gaussian process autoencoder
    Camastra, Francesco
    Casolaro, Angelo
    Iannuzzo, Gennaro
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (21): : 15573 - 15582
  • [4] Deep learning with differential Gaussian process flows
    Hegde, Pashupati
    Heinonen, Markus
    Lahdesmaki, Harri
    Kaski, Samuel
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [5] A DEEP LEARNING PERSPECTIVE TO ATMOSPHERIC CORRECTION OF SATELLITE IMAGES
    Shah, Maitrik
    Raval, Mehul S.
    Divakaran, Srikrishnan
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 346 - 349
  • [6] Inverse Reinforcement Learning via Deep Gaussian Process
    Jin, Ming
    Damianou, Andreas
    Abbeel, Pieter
    Spanos, Costas
    CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI2017), 2017,
  • [7] Deep learning wavefront sensing and aberration correction in atmospheric turbulence
    Kaiqiang Wang
    MengMeng Zhang
    Ju Tang
    Lingke Wang
    Liusen Hu
    Xiaoyan Wu
    Wei Li
    Jianglei Di
    Guodong Liu
    Jianlin Zhao
    PhotoniX, 2
  • [8] ONBOARD CLOUD DETECTION AND ATMOSPHERIC CORRECTION WITH DEEP LEARNING EMULATORS
    Mateo-Garcia, Gonzalo
    Aybar, Cesar
    Acciarini, Giacomo
    Ruzicka, Vil
    Meoni, Gabriele
    Longepe, Nicolas
    Gomez-Chova, Luis
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 1875 - 1878
  • [9] Deep learning wavefront sensing and aberration correction in atmospheric turbulence
    Wang, Kaiqiang
    Zhang, MengMeng
    Tang, Ju
    Wang, Lingke
    Hu, Liusen
    Wu, Xiaoyan
    Li, Wei
    Di, Jianglei
    Liu, Guodong
    Zhao, Jianlin
    PHOTONIX, 2021, 2 (01)
  • [10] Deep Gaussian process with multitask and transfer learning for performance optimization
    Sid-Lakhdar, Wissam M.
    Aznaveh, Mohsen
    Luszczek, Piotr
    Dongarra, Jack
    2022 IEEE HIGH PERFORMANCE EXTREME COMPUTING VIRTUAL CONFERENCE (HPEC), 2022,