Deep learning with differential Gaussian process flows

被引:0
|
作者
Hegde, Pashupati [1 ]
Heinonen, Markus
Lahdesmaki, Harri
Kaski, Samuel
机构
[1] Aalto Univ, Dept Comp Sci, Espoo, Finland
基金
芬兰科学院;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel deep learning paradigm of differential flows that learn a stochastic differential equation transformations of inputs prior to a standard classification or regression function. The key property of differential Gaussian processes is the warping of inputs through infinitely deep, but infinitesimal, differential fields, that generalise discrete layers into a dynamical system. We demonstrate excellent results as compared to deep Gaussian processes and Bayesian neural networks.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Manifold learning by a deep Gaussian process autoencoder
    Francesco Camastra
    Angelo Casolaro
    Gennaro Iannuzzo
    Neural Computing and Applications, 2023, 35 : 15573 - 15582
  • [2] Active Learning for Deep Gaussian Process Surrogates
    Sauer, Annie
    Gramacy, Robert B.
    Higdon, David
    TECHNOMETRICS, 2023, 65 (01) : 4 - 18
  • [3] Manifold learning by a deep Gaussian process autoencoder
    Camastra, Francesco
    Casolaro, Angelo
    Iannuzzo, Gennaro
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (21): : 15573 - 15582
  • [4] Gaussian Process and Deep Learning Atmospheric Correction
    Basener, Bill
    Basener, Abigail
    REMOTE SENSING, 2023, 15 (03)
  • [5] Inverse Reinforcement Learning via Deep Gaussian Process
    Jin, Ming
    Damianou, Andreas
    Abbeel, Pieter
    Spanos, Costas
    CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI2017), 2017,
  • [6] Monotonic Gaussian Process Flows
    Ustyuzhaninov, Ivan
    Kazlauskaite, Ieva
    Ek, Carl Henrik
    Campbell, Neill D. F.
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108
  • [7] Deep Gaussian process with multitask and transfer learning for performance optimization
    Sid-Lakhdar, Wissam M.
    Aznaveh, Mohsen
    Luszczek, Piotr
    Dongarra, Jack
    2022 IEEE HIGH PERFORMANCE EXTREME COMPUTING VIRTUAL CONFERENCE (HPEC), 2022,
  • [8] Hybrid Deep Learning Gaussian Process for Deterministic and Probabilistic Load Forecasting
    Zhao, Pengfei
    Zhang, Zhenyuan
    Chen, Haoran
    Wang, Peng
    2021 IEEE IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (IEEE I&CPS ASIA 2021), 2021, : 456 - 463
  • [9] Heterogeneous Gaussian Mechanism: Preserving Differential Privacy in Deep Learning with Provable Robustness
    NhatHai Phan
    Vu, Minh N.
    Liu, Yang
    Jin, Ruoming
    Dou, Dejing
    Wu, Xintao
    Thai, My T.
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4753 - 4759
  • [10] Convolutional Normalizing Flows for Deep Gaussian Processes
    Yu, Haibin
    Liu, Dapeng
    Low, Bryan Kian Hsiang
    Jaillet, Patrick
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,