Deep learning with differential Gaussian process flows

被引:0
|
作者
Hegde, Pashupati [1 ]
Heinonen, Markus
Lahdesmaki, Harri
Kaski, Samuel
机构
[1] Aalto Univ, Dept Comp Sci, Espoo, Finland
基金
芬兰科学院;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel deep learning paradigm of differential flows that learn a stochastic differential equation transformations of inputs prior to a standard classification or regression function. The key property of differential Gaussian processes is the warping of inputs through infinitely deep, but infinitesimal, differential fields, that generalise discrete layers into a dynamical system. We demonstrate excellent results as compared to deep Gaussian processes and Bayesian neural networks.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Deep Gaussian Process autoencoders for novelty detection
    Domingues, Remi
    Michiardi, Pietro
    Zouaoui, Jihane
    Filippone, Maurizio
    MACHINE LEARNING, 2018, 107 (8-10) : 1363 - 1383
  • [32] Longitudinal Deep Kernel Gaussian Process Regression
    Liang, Junjie
    Wu, Yanting
    Xu, Dongkuan
    Honavar, Vasant G.
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 8556 - 8564
  • [33] Posterior Contraction for Deep Gaussian Process Priors
    Finocchio, Gianluca
    Schmidt-Hieber, Johannes
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [34] A Deep Gaussian Process Approach for Predictive Maintenance
    Zeng, Junqi
    Liang, Zhenglin
    IEEE TRANSACTIONS ON RELIABILITY, 2023, 72 (03) : 916 - 933
  • [35] Fast deep mixtures of Gaussian process experts
    Etienam, Clement
    Law, Kody J. H.
    Wade, Sara
    Zankin, Vitaly
    MACHINE LEARNING, 2024, 113 (03) : 1483 - 1508
  • [36] CLASSIFICATION OF MRI DATA USING DEEP LEARNING AND GAUSSIAN PROCESS-BASED MODEL SELECTION
    Bertrand, Hadrien
    Perrot, Matthieu
    Ardon, Roberto
    Bloch, Isabelle
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 745 - 748
  • [37] Hybrid Deep Learning-Gaussian Process Network for Pedestrian Lane Detection in Unstructured Scenes
    Nguyen, Thi Nhat Anh
    Phung, Son Lam
    Bouzerdoum, Abdesselam
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (12) : 5324 - 5338
  • [38] Deep Learning and Gaussian Process Regression Based Path Extraction for Visual Navigation under Canopy
    Zhang, Weirong
    Chen, Xuegeng
    Qi, Jiangtao
    Zhou, Junbo
    Li, Ning
    Wang, Shuo
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2024, 55 (07): : 15 - 26
  • [39] Deep Learning with Differential Privacy
    Abadi, Martin
    Chu, Andy
    Goodfellow, Ian
    McMahan, H. Brendan
    Mironov, Ilya
    Talwar, Kunal
    Zhang, Li
    CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2016, : 308 - 318
  • [40] Asymmetric Transfer Learning with Deep Gaussian Processes
    Kandemir, Melih
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 730 - 738