Deep learning with differential Gaussian process flows

被引:0
|
作者
Hegde, Pashupati [1 ]
Heinonen, Markus
Lahdesmaki, Harri
Kaski, Samuel
机构
[1] Aalto Univ, Dept Comp Sci, Espoo, Finland
基金
芬兰科学院;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel deep learning paradigm of differential flows that learn a stochastic differential equation transformations of inputs prior to a standard classification or regression function. The key property of differential Gaussian processes is the warping of inputs through infinitely deep, but infinitesimal, differential fields, that generalise discrete layers into a dynamical system. We demonstrate excellent results as compared to deep Gaussian processes and Bayesian neural networks.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Predicting groundwater depth fluctuations using deep learning, extreme learning machine and Gaussian process: a comparative study
    Kumar, Deepak
    Roshni, Thendiyath
    Singh, Anshuman
    Jha, Madan Kumar
    Samui, Pijush
    EARTH SCIENCE INFORMATICS, 2020, 13 (04) : 1237 - 1250
  • [22] Predicting groundwater depth fluctuations using deep learning, extreme learning machine and Gaussian process: a comparative study
    Deepak Kumar
    Thendiyath Roshni
    Anshuman Singh
    Madan Kumar Jha
    Pijush Samui
    Earth Science Informatics, 2020, 13 : 1237 - 1250
  • [23] Online Updating for Gaussian Process Learning
    Su, Hongjun
    Zhang, Hong
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2017, : 180 - 183
  • [24] Gaussian Process Convolutional Dictionary Learning
    Song, Andrew H.
    Tolooshams, Bahareh
    Ba, Demba
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 95 - 99
  • [25] Inverse Reinforcement Learning with Gaussian Process
    Qiao, Qifeng
    Beling, Peter A.
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 113 - 118
  • [26] Gaussian process approach for metric learning
    Li, Ping
    Chen, Songcan
    PATTERN RECOGNITION, 2019, 87 : 17 - 28
  • [27] Actively Learning Gaussian Process Dynamics
    Buisson-Fenet, Mona
    Solowjow, Friedrich
    Trimpe, Sebastian
    LEARNING FOR DYNAMICS AND CONTROL, VOL 120, 2020, 120 : 5 - 15
  • [28] Gaussian process learning of nonlinear dynamics
    Ye, Dongwei
    Guo, Mengwu
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 138
  • [29] Deep Gaussian Process autoencoders for novelty detection
    Rémi Domingues
    Pietro Michiardi
    Jihane Zouaoui
    Maurizio Filippone
    Machine Learning, 2018, 107 : 1363 - 1383
  • [30] Fast deep mixtures of Gaussian process experts
    Clement Etienam
    Kody J. H. Law
    Sara Wade
    Vitaly Zankin
    Machine Learning, 2024, 113 : 1483 - 1508