Semi-Discrete and Fully Discrete Weak Galerkin Finite Element Methods for a Quasistatic Maxwell Viscoelastic Model

被引:3
|
作者
Xiao, Jihong [1 ,2 ]
Zhu, Zimo [1 ]
Xie, Xiaoping [1 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[2] Sichuan Univ, Math Dept, Jinjiang Coll, Pengshan 620860, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasistatic Maxwell viscoelastic model; weak Galerkin method; semi-discrete scheme; fully discrete scheme; error estimate; WAVE-PROPAGATION SIMULATION; LINEAR ELASTICITY; DIFFUSION-PROBLEMS;
D O I
10.4208/nmtma.OA-2022-0024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers weak Galerkin finite element approximations on polygonal/polyhedral meshes for a quasistatic Maxwell viscoelastic model. The spatial discretization uses piecewise polynomials of degree k (k >= 1) for the stress approximation, degree k + 1 for the velocity approximation, and degree k for the numerical trace of velocity on the inter-element boundaries. The temporal discretization in the fully discrete method adopts a backward Euler difference scheme. We show the existence and uniqueness of the semi-discrete and fully discrete solutions, and derive optimal a priori error estimates. Numerical examples are provided to support the theoretical analysis.
引用
收藏
页码:79 / 110
页数:32
相关论文
共 50 条
  • [31] Fully discrete finite element method for Maxwell's equations with nonlinear conductivity
    Durand, Stephane
    Slodicka, Marian
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (04) : 1713 - 1733
  • [32] A discrete divergence free weak Galerkin finite element method for the Stokes equations
    Mu, Lin
    Wang, Junping
    Ye, Xiu
    Zhang, Shangyou
    APPLIED NUMERICAL MATHEMATICS, 2018, 125 : 172 - 182
  • [33] On the stability and convergence of a semi-discrete discontinuous Galerkin scheme to the kinetic Cucker–Smale model
    Francesco Gargano
    Seung-Yeal Ha
    Vincenzo Sciacca
    Ricerche di Matematica, 2024, 73 : 157 - 187
  • [34] The Error Estimates of Semi-discrete Galerkin Methods for some Non-linear Parabolic Equations
    孙澈
    数学研究与评论, 1984, (04) : 57 - 68
  • [35] A semi-discrete finite element method for a class of time-fractional diffusion equations
    Sun, HongGuang
    Chen, Wen
    Sze, K. Y.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1990):
  • [36] A semi-discrete defect correction finite element method for unsteady incompressible magnetohydrodynamics equations
    Si, Zhiyong
    Liu, Cui
    Wang, Yunxia
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (11) : 4179 - 4196
  • [37] Error Constants for the Semi-Discrete Galerkin Approximation of the Linear Heat Equation
    Makoto Mizuguchi
    Mitsuhiro T. Nakao
    Kouta Sekine
    Shin’ichi Oishi
    Journal of Scientific Computing, 2021, 89
  • [38] Fully Discrete H1-Galerkin Mixed Finite Element Methods for Parabolic Optimal Control Problems
    Hou, Tianliang
    Liu, Chunmei
    Chen, Hongbo
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2019, 12 (01) : 134 - 153
  • [39] Semi-discrete Galerkin approximation of the single layer equation by general splines
    Ainsworth, M
    Grigorieff, R
    Sloan, I
    NUMERISCHE MATHEMATIK, 1998, 79 (02) : 157 - 174
  • [40] Error Constants for the Semi-Discrete Galerkin Approximation of the Linear Heat Equation
    Mizuguchi, Makoto
    Nakao, Mitsuhiro T.
    Sekine, Kouta
    Oishi, Shin'ichi
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 89 (02)