Semi-Discrete and Fully Discrete Weak Galerkin Finite Element Methods for a Quasistatic Maxwell Viscoelastic Model

被引:3
|
作者
Xiao, Jihong [1 ,2 ]
Zhu, Zimo [1 ]
Xie, Xiaoping [1 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[2] Sichuan Univ, Math Dept, Jinjiang Coll, Pengshan 620860, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasistatic Maxwell viscoelastic model; weak Galerkin method; semi-discrete scheme; fully discrete scheme; error estimate; WAVE-PROPAGATION SIMULATION; LINEAR ELASTICITY; DIFFUSION-PROBLEMS;
D O I
10.4208/nmtma.OA-2022-0024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers weak Galerkin finite element approximations on polygonal/polyhedral meshes for a quasistatic Maxwell viscoelastic model. The spatial discretization uses piecewise polynomials of degree k (k >= 1) for the stress approximation, degree k + 1 for the velocity approximation, and degree k for the numerical trace of velocity on the inter-element boundaries. The temporal discretization in the fully discrete method adopts a backward Euler difference scheme. We show the existence and uniqueness of the semi-discrete and fully discrete solutions, and derive optimal a priori error estimates. Numerical examples are provided to support the theoretical analysis.
引用
收藏
页码:79 / 110
页数:32
相关论文
共 50 条
  • [21] Semi-discrete finite element analysis of slab-girder bridges
    Guo, MW
    Harik, IE
    Ren, WX
    COMPUTERS & STRUCTURES, 2002, 80 (23) : 1789 - 1796
  • [22] A priori error estimates of fully discrete finite element Galerkin method for Kelvin-Voigt viscoelastic fluid flow model
    Bajpai, Saumya
    Pany, Ambit K.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (12) : 3872 - 3895
  • [23] Discrete maximal parabolic regularity for Galerkin finite element methods
    Leykekhman, Dmitriy
    Vexler, Boris
    NUMERISCHE MATHEMATIK, 2017, 135 (03) : 923 - 952
  • [24] Discrete maximal parabolic regularity for Galerkin finite element methods
    Dmitriy Leykekhman
    Boris Vexler
    Numerische Mathematik, 2017, 135 : 923 - 952
  • [25] A semi-discrete shell finite element for textile composite reinforcement forming simulation
    Hamila, N.
    Boisse, P.
    Sabourin, F.
    Brunet, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 79 (12) : 1443 - 1466
  • [26] FULLY DISCRETE FINITE ELEMENT METHOD FOR THE VISCOELASTIC FLUID MOTION EQUATION
    Wang, Kun
    He, Yinnian
    Shang, Yueqiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 13 (03): : 665 - 684
  • [27] A Two-Grid Algorithm of Fully Discrete Galerkin Finite Element Methods for a Nonlinear Hyperbolic Equation
    Li, Kang
    Tan, Zhijun
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2020, 13 (04) : 1050 - 1067
  • [28] Fully Discrete Galerkin Finite Element Method for the Cubic Nonlinear Schrodinger Equation
    Wang, Jianyun
    Huang, Yunqing
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2017, 10 (03) : 671 - 688
  • [29] A Weak Galerkin Finite Element Method for the Maxwell Equations
    Mu, Lin
    Wang, Junping
    Ye, Xiu
    Zhang, Shangyou
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (01) : 363 - 386
  • [30] A Weak Galerkin Finite Element Method for the Maxwell Equations
    Lin Mu
    Junping Wang
    Xiu Ye
    Shangyou Zhang
    Journal of Scientific Computing, 2015, 65 : 363 - 386