Semi-Discrete and Fully Discrete Weak Galerkin Finite Element Methods for a Quasistatic Maxwell Viscoelastic Model
被引:3
|
作者:
Xiao, Jihong
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
Sichuan Univ, Math Dept, Jinjiang Coll, Pengshan 620860, Peoples R ChinaSichuan Univ, Sch Math, Chengdu 610064, Peoples R China
Xiao, Jihong
[1
,2
]
Zhu, Zimo
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, Sch Math, Chengdu 610064, Peoples R ChinaSichuan Univ, Sch Math, Chengdu 610064, Peoples R China
Zhu, Zimo
[1
]
Xie, Xiaoping
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, Sch Math, Chengdu 610064, Peoples R ChinaSichuan Univ, Sch Math, Chengdu 610064, Peoples R China
Xie, Xiaoping
[1
]
机构:
[1] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[2] Sichuan Univ, Math Dept, Jinjiang Coll, Pengshan 620860, Peoples R China
This paper considers weak Galerkin finite element approximations on polygonal/polyhedral meshes for a quasistatic Maxwell viscoelastic model. The spatial discretization uses piecewise polynomials of degree k (k >= 1) for the stress approximation, degree k + 1 for the velocity approximation, and degree k for the numerical trace of velocity on the inter-element boundaries. The temporal discretization in the fully discrete method adopts a backward Euler difference scheme. We show the existence and uniqueness of the semi-discrete and fully discrete solutions, and derive optimal a priori error estimates. Numerical examples are provided to support the theoretical analysis.
机构:
Xi An Jiao Tong Univ, Fac Sci, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R ChinaUniv Tennessee, Dept Math, Knoxville, TN 37996 USA
机构:
Virginia Polytech Inst & State Univ, Kevin T Crofton Dept Aerosp & Ocean Engn, Blacksburg, VA 24060 USAVirginia Polytech Inst & State Univ, Kevin T Crofton Dept Aerosp & Ocean Engn, Blacksburg, VA 24060 USA
机构:
Ecl. Natl. Superieure Techniques A., F-75739 Paris Cedex 15, 32, boulevard VictorEcl. Natl. Superieure Techniques A., F-75739 Paris Cedex 15, 32, boulevard Victor
Ciarlet Jr. P.
Zou J.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, Chinese University of Hong Kong, Shatin, N.T.Ecl. Natl. Superieure Techniques A., F-75739 Paris Cedex 15, 32, boulevard Victor