Weak Galerkin;
Finite element methods;
The Stokes equations;
Divergence free;
CONSTRUCTION;
D O I:
10.1016/j.apnum.2017.11.006
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
A discrete divergence free weak Galerkin finite element method is developed for the Stokes equations based on a weak Galerkin (WG) method introduced in [17]. Discrete divergence free bases are constructed explicitly for the lowest order weak Galerkin elements in two and three dimensional spaces. These basis functions can be derived on general meshes of arbitrary shape of polygons and polyhedrons. With the divergence free basis derived, the discrete divergence free WG scheme can eliminate pressure variable from the system and reduces a saddle point problem to a symmetric and positive definite system with many fewer unknowns. Numerical results are presented to demonstrate the robustness and accuracy of this discrete divergence free WG method. (C) 2017 IMACS. Published by Elsevier B.V. All rights reserved.
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Liu, Xin
Li, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Univ Sci & Technol, Sch Arts & Sci, Xian 710021, Shaanxi, Peoples R China
Baoji Univ Arts & Sci, Dept Math, Baoji 721007, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Li, Jian
Chen, Zhangxin
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Univ Calgary, Schulich Sch Engn, Dept Chem & Petr Engn, 2500 Univ Dr NW, Calgary, AB T2N 1N4, CanadaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
机构:
Jilin Univ, Dept Math, Changchun, Jilin, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaJilin Univ, Dept Math, Changchun, Jilin, Peoples R China
Zhang, Qianru
Kuang, Haopeng
论文数: 0引用数: 0
h-index: 0
机构:
Jilin Univ, Dept Math, Changchun, Jilin, Peoples R ChinaJilin Univ, Dept Math, Changchun, Jilin, Peoples R China
Kuang, Haopeng
Wang, Xiuli
论文数: 0引用数: 0
h-index: 0
机构:
Jilin Univ, Dept Math, Changchun, Jilin, Peoples R ChinaJilin Univ, Dept Math, Changchun, Jilin, Peoples R China
Wang, Xiuli
Zhai, Qilong
论文数: 0引用数: 0
h-index: 0
机构:
Jilin Univ, Dept Math, Changchun, Jilin, Peoples R ChinaJilin Univ, Dept Math, Changchun, Jilin, Peoples R China
机构:
Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R ChinaSichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
He, Kai
Chen, Junjie
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R ChinaSichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
Chen, Junjie
Zhang, Li
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Sch Math Sci, VC & VR Key Lab Sichuan Prov, Chengdu 610068, Peoples R ChinaSichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
Zhang, Li
Ran, Maohua
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R ChinaSichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
机构:
Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R ChinaSichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
He, Kai
Chen, Junjie
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R ChinaSichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
Chen, Junjie
Zhang, Li
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
Sichuan Normal Univ, VC & VR Key Lab Sichuan Prov, Chengdu 610068, Peoples R ChinaSichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
Zhang, Li
Ran, Maohua
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R ChinaSichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China