Estimation Curve of Mixed Spline Truncated and Fourier Series Estimator for Geographically Weighted Nonparametric Regression

被引:4
|
作者
Laome, Lilis [1 ,2 ]
Budiantara, I. Nyoman [1 ]
Ratnasari, Vita [1 ]
机构
[1] Inst Teknol Sepuluh Nopember, Dept Stat, Surabaya 60111, Indonesia
[2] Univ Halu Oleo, Fac Math & Nat Sci, Dept Stat, Kendari 93132, Indonesia
关键词
GWNR; linear estimator; mixed estimator; spatial data; unbiased;
D O I
10.3390/math11010152
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Geographically Weighted Regression (GWR) is the development of multiple linear regression models used in spatial data. The assumption of spatial heterogeneity results in each location having different characteristics and allows the relationships between the response variable and each predictor variable to be unknown, hence nonparametric regression becomes one of the alternatives that can be used. In addition, regression functions are not always the same between predictor variables. This study aims to use the Geographically Weighted Nonparametric Regression (GWNR) model with a mixed estimator of truncated spline and Fourier series. Both estimators are expected to overcome unknown data patterns in spatial data. The mixed GWNR model estimator is then determined using the Weighted Maximum Likelihood Estimator (WMLE) technique. The estimator's characteristics are then determined. The results of the study found that the estimator of the mixed GWNR model is an estimator that is not biased and linear to the response variable y.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Improvement of the Liu Estimator in Weighted Mixed Regression
    Yang, Hu
    Chang, Xinfeng
    Liu, Deqiang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (02) : 285 - 292
  • [42] Statistical Modeling: A New Regression Curve Approximation using Mixed Estimators Truncated Spline and Epanechnikov Kernel
    Sifriyani, Andrea Tri Rian
    Dani, Andrea Tri Rian
    Fauziyah, Meirinda
    Budiantara, I. Nyoman
    ENGINEERING LETTERS, 2023, 31 (04) : 1649 - 1655
  • [43] NONPARAMETRIC IDENTIFICATION AND ESTIMATION OF TRUNCATED REGRESSION MODELS WITH HETEROSKEDASTICITY
    Chen, Songnian
    Lu, Xun
    Zhou, Xianbo
    Zhou, Yahong
    ECONOMETRIC THEORY, 2018, 34 (03) : 543 - 573
  • [44] Local linear regression estimator on the boundary correction in nonparametric regression estimation
    Cheruiyot L.R.
    Journal of Statistical Theory and Applications, 2020, 19 (3): : 460 - 471
  • [45] Nonparametric Inference for an Inverse-Probability-Weighted Estimator with Doubly Truncated Data
    Zhang, Xu
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (02) : 489 - 504
  • [46] Comparison of Geographically Weighted Regression (GWR) and Mixed Geographically Weighted Regression (MGWR) Models on the Poverty Levels in Central Java in 2023
    Alya, Najma Attaqiya
    Almaulidiyah, Qothrotunnidha
    Farouk, Bailey Reshad
    Rantini, Dwi
    Ramadan, Arip
    Othman, Fazidah
    IAENG International Journal of Applied Mathematics, 2024, 54 (12) : 2746 - 2757
  • [47] MODELING OF DENGUE HEMORRHAGIC FEVER CASES IN AWS HOSPITAL SAMARINDA USING BI-RESPONSES NONPARAMETRIC REGRESSION WITH ESTIMATOR SPLINE TRUNCATED
    Sifriyani
    Diu, Maria Yasinta
    Mar'ah, Zakiyah
    Anggraini, Dewi
    Jalaluddin, Syatirah
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2023,
  • [48] The Berry-Esseen bounds of the weighted estimator in a nonparametric regression model
    Wang, Xuejun
    Wu, Yi
    Hu, Shuhe
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2019, 71 (05) : 1143 - 1162
  • [49] Asymptotic normality and mean consistency for the weighted estimator in nonparametric regression models
    Yi Wu
    Xuejun Wang
    Soo Hak Sung
    Journal of the Korean Statistical Society, 2019, 48 : 463 - 479
  • [50] Asymptotic normality and mean consistency for the weighted estimator in nonparametric regression models
    Wu, Yi
    Wang, Xuejun
    Sung, Soo Hak
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2019, 48 (03) : 463 - 479