Estimation Curve of Mixed Spline Truncated and Fourier Series Estimator for Geographically Weighted Nonparametric Regression

被引:4
|
作者
Laome, Lilis [1 ,2 ]
Budiantara, I. Nyoman [1 ]
Ratnasari, Vita [1 ]
机构
[1] Inst Teknol Sepuluh Nopember, Dept Stat, Surabaya 60111, Indonesia
[2] Univ Halu Oleo, Fac Math & Nat Sci, Dept Stat, Kendari 93132, Indonesia
关键词
GWNR; linear estimator; mixed estimator; spatial data; unbiased;
D O I
10.3390/math11010152
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Geographically Weighted Regression (GWR) is the development of multiple linear regression models used in spatial data. The assumption of spatial heterogeneity results in each location having different characteristics and allows the relationships between the response variable and each predictor variable to be unknown, hence nonparametric regression becomes one of the alternatives that can be used. In addition, regression functions are not always the same between predictor variables. This study aims to use the Geographically Weighted Nonparametric Regression (GWNR) model with a mixed estimator of truncated spline and Fourier series. Both estimators are expected to overcome unknown data patterns in spatial data. The mixed GWNR model estimator is then determined using the Weighted Maximum Likelihood Estimator (WMLE) technique. The estimator's characteristics are then determined. The results of the study found that the estimator of the mixed GWNR model is an estimator that is not biased and linear to the response variable y.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Estimation of Multiresponse Multipredictor Nonparametric Regression Model Using Mixed Estimator
    Chamidah, Nur
    Lestari, Budi
    Budiantara, I. Nyoman
    Aydin, Dursun
    SYMMETRY-BASEL, 2024, 16 (04):
  • [22] Scale-adaptive estimation of mixed geographically weighted regression models
    Chen, Feng
    Mei, Chang-Lin
    ECONOMIC MODELLING, 2021, 94 : 737 - 747
  • [23] Parameter Estimation in Geographically Weighted Regression
    Luo, Juan
    2009 17TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, VOLS 1 AND 2, 2009, : 1206 - 1211
  • [24] The performance of mixed truncated spline-local linear nonparametric regression model for longitudinal data
    Sriliana, Idhia
    Budiantara, I. Nyoman
    Ratnasari, Vita
    METHODSX, 2024, 12
  • [25] Partial Hypothesis Testing of Truncated Spline Model in Nonparametric Regression
    Husni, Imra Atil
    Budiantara, I. Nyoman
    Zain, Ismaini
    8TH ANNUAL BASIC SCIENCE INTERNATIONAL CONFERENCE: COVERAGE OF BASIC SCIENCES TOWARD THE WORLD'S SUSTAINABILITY CHALLANGES, 2018, 2021
  • [26] Mixture Model of Spline Truncated and Kernel in Multivariable Nonparametric Regression
    Rismal
    Budiantara, I. Nyoman
    Prastyo, Dedy Dwi
    INNOVATIONS THROUGH MATHEMATICAL AND STATISTICAL RESEARCH: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS (ICMSS2016), 2016, 1739
  • [27] On complete consistency for the weighted estimator of nonparametric regression models
    Zhang, Rui
    Wu, Yi
    Xu, Weifeng
    Wang, Xuejun
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) : 2319 - 2333
  • [28] On complete consistency for the weighted estimator of nonparametric regression models
    Rui Zhang
    Yi Wu
    Weifeng Xu
    Xuejun Wang
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 2319 - 2333
  • [29] A scale-adaptive estimation for mixed geographically and temporally weighted regression models
    Hong, Zhimin
    Wang, Zhiwen
    Wang, Huhu
    Wang, Ruoxuan
    JOURNAL OF GEOGRAPHICAL SYSTEMS, 2025, 27 (01) : 85 - 111
  • [30] A note on the mixed geographically weighted regression model
    Mei, CL
    He, SY
    Fang, KT
    JOURNAL OF REGIONAL SCIENCE, 2004, 44 (01) : 143 - 157