Estimation Curve of Mixed Spline Truncated and Fourier Series Estimator for Geographically Weighted Nonparametric Regression

被引:4
|
作者
Laome, Lilis [1 ,2 ]
Budiantara, I. Nyoman [1 ]
Ratnasari, Vita [1 ]
机构
[1] Inst Teknol Sepuluh Nopember, Dept Stat, Surabaya 60111, Indonesia
[2] Univ Halu Oleo, Fac Math & Nat Sci, Dept Stat, Kendari 93132, Indonesia
关键词
GWNR; linear estimator; mixed estimator; spatial data; unbiased;
D O I
10.3390/math11010152
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Geographically Weighted Regression (GWR) is the development of multiple linear regression models used in spatial data. The assumption of spatial heterogeneity results in each location having different characteristics and allows the relationships between the response variable and each predictor variable to be unknown, hence nonparametric regression becomes one of the alternatives that can be used. In addition, regression functions are not always the same between predictor variables. This study aims to use the Geographically Weighted Nonparametric Regression (GWNR) model with a mixed estimator of truncated spline and Fourier series. Both estimators are expected to overcome unknown data patterns in spatial data. The mixed GWNR model estimator is then determined using the Weighted Maximum Likelihood Estimator (WMLE) technique. The estimator's characteristics are then determined. The results of the study found that the estimator of the mixed GWNR model is an estimator that is not biased and linear to the response variable y.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Weighted nonparametric regression estimation with truncated and dependent data
    Liang, Han-Ying
    JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (04) : 1051 - 1073
  • [12] Biresponse nonparametric regression model in principal component analysis with truncated spline estimator
    Islamiyati, Anna
    Kalondeng, Anisa
    Sunusi, Nurtiti
    Zakir, Muhammad
    Amir, Amir Kamal
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2022, 34 (03)
  • [13] Nonparametric regression estimator of multivariable Fourier Series for categorical data
    Zulfadhli, Muhammad
    Budiantara, I. Nyoman
    Ratnasari, Vita
    METHODSX, 2024, 13
  • [14] On the estimation and testing of mixed geographically weighted regression models
    Wei, Chuan-Hua
    Qi, Fei
    ECONOMIC MODELLING, 2012, 29 (06) : 2615 - 2620
  • [15] COMPARISON OF SIMULTANEOUSLY NONPARAMETRIC REGRESSION BASED ON SPLINE AND FOURIER SERIES ESTIMATOR RELATED SOCIAL AID DISTRIBUTION IN INDONESIA
    Mardianto, M. Fariz Fadillah
    Suliyanto
    Pusporani, Elly
    Simamora, Antonio Nikolas Manuel Bonar
    Aliffia, Netha
    Cahyasari, Ayuning Dwis
    Purwoko, Chaerobby Fakhri Fauzaan
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2022,
  • [16] Nonparametric spatio-temporal modeling: Contruction of a geographically and temporally weighted spline regression
    Sifriyani
    Syaripuddin
    Fathurahman, M.
    Sari, Nariza Wanti Wulan
    Fauziyah, Meirinda
    Dani, Andrea Tri Rian
    Jannah, Raudhatul
    Juriani, S. Dwi
    Kusuma, Ratna
    METHODSX, 2025, 14
  • [17] Selection of optimal knot point and best geographic weighted on geographically weighted spline nonparametric regression model
    Sifriyani
    Budiantara, I. Nyoman
    Candra, Krishna Purnawan
    Putri, Marisa
    METHODSX, 2024, 13
  • [18] Mixed Estimator of Kernel and Fourier Series in Semiparametric Regression
    Afifah, Ngizatul
    Budiantara, I. Nyoman
    Latra, I. Nyoman
    INTERNATIONAL CONFERENCE ON MATHEMATICS: EDUCATION, THEORY AND APPLICATION, 2017, 855
  • [19] Efficient estimation of heteroscedastic mixed geographically weighted regression models
    Chang-Lin Mei
    Feng Chen
    Wen-Tao Wang
    Peng-Cheng Yang
    Si-Lian Shen
    The Annals of Regional Science, 2021, 66 : 185 - 206
  • [20] Efficient estimation of heteroscedastic mixed geographically weighted regression models
    Mei, Chang-Lin
    Chen, Feng
    Wang, Wen-Tao
    Yang, Peng-Cheng
    Shen, Si-Lian
    ANNALS OF REGIONAL SCIENCE, 2021, 66 (01): : 185 - 206