Weighted nonparametric regression estimation with truncated and dependent data

被引:4
|
作者
Liang, Han-Ying [1 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
asymptotic normality; weighted Nadaraya-Watson type estimator; conditional mean function; truncated data; alpha-mixing; CONVERGENCE;
D O I
10.1080/10485252.2012.721516
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
By applying the empirical likelihood method, we construct a new weighted Nadaraya-Watson type estimator of the conditional mean function for a left truncation model. The function includes the regression function, conditional moment as well as conditional distribution function. Under strong mixing assumptions, we obtain the asymptotic normality and weak consistency of the estimator. Finite sample behaviour of the estimator is investigated via simulations too.
引用
收藏
页码:1051 / 1073
页数:23
相关论文
共 50 条
  • [1] Strong convergence in nonparametric regression with truncated dependent data
    Liang, Han-Ying
    Li, Deli
    Qi, Yongcheng
    JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (01) : 162 - 174
  • [2] Weighted estimation in linear regression for truncated survival data
    Gross, ST
    SCANDINAVIAN JOURNAL OF STATISTICS, 1996, 23 (02) : 179 - 193
  • [3] Weighted rank estimation for nonparametric transformation models with doubly truncated data
    Tianqing Liu
    Xiaohui Yuan
    Jianguo Sun
    Journal of the Korean Statistical Society, 2021, 50 : 1 - 24
  • [4] Weighted rank estimation for nonparametric transformation models with doubly truncated data
    Liu, Tianqing
    Yuan, Xiaohui
    Sun, Jianguo
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2021, 50 (01) : 1 - 24
  • [5] Nonparametric regression with doubly truncated data
    Moreira, C.
    de Una-Alvarez, J.
    Meira-Machado, L.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 93 : 294 - 307
  • [6] Quantile Regression Based on the Weighted Approach with Dependent Truncated Data
    Hsieh, Jin-Jian
    Hsieh, Cheng-Chih
    MATHEMATICS, 2023, 11 (17)
  • [7] Nonparametric estimation of expectile regression in functional dependent data
    Almanjahie, Ibrahim M.
    Bouzebda, Salim
    Kaid, Zoulikha
    Laksaci, Ali
    JOURNAL OF NONPARAMETRIC STATISTICS, 2022, 34 (01) : 250 - 281
  • [8] Nonparametric Quantile Regression Estimation for Functional Dependent Data
    Dabo-Niang, Sophie
    Laksaci, Ali
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (07) : 1254 - 1268
  • [9] NONPARAMETRIC-ESTIMATION OF THE SLOPE OF A TRUNCATED REGRESSION
    BHATTACHARYA, PK
    CHERNOFF, H
    YANG, SS
    ANNALS OF STATISTICS, 1983, 11 (02): : 505 - 514
  • [10] Nonparametric regression estimation using multivariable truncated splines for binary response data
    Suriaslan, Afiqah Saffa
    Budiantara, I. Nyoman
    Ratnasari, Vita
    METHODSX, 2025, 14