asymptotic normality;
weighted Nadaraya-Watson type estimator;
conditional mean function;
truncated data;
alpha-mixing;
CONVERGENCE;
D O I:
10.1080/10485252.2012.721516
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
By applying the empirical likelihood method, we construct a new weighted Nadaraya-Watson type estimator of the conditional mean function for a left truncation model. The function includes the regression function, conditional moment as well as conditional distribution function. Under strong mixing assumptions, we obtain the asymptotic normality and weak consistency of the estimator. Finite sample behaviour of the estimator is investigated via simulations too.
机构:
Univ Lille 2, Fac Pharm, Lab Biomath, 3 Rue Pr Laguesse, F-59006 Lille, FranceUniv Lille 2, Fac Pharm, Lab Biomath, 3 Rue Pr Laguesse, F-59006 Lille, France
Lemdani, Mohamed
Said, Elias Ould
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lille Nord France, F-59000 Lille, France
Univ Littoral Cote dOpale, LMPA, F-62228 Calais, FranceUniv Lille 2, Fac Pharm, Lab Biomath, 3 Rue Pr Laguesse, F-59006 Lille, France