Comparison of Geographically Weighted Regression (GWR) and Mixed Geographically Weighted Regression (MGWR) Models on the Poverty Levels in Central Java in 2023

被引:0
|
作者
Alya, Najma Attaqiya [1 ]
Almaulidiyah, Qothrotunnidha [1 ]
Farouk, Bailey Reshad [1 ]
Rantini, Dwi [2 ]
Ramadan, Arip [3 ]
Othman, Fazidah [4 ]
机构
[1] Engineering Department, Data Science Technology Study Program, Universitas Airlangga, Indonesia
[2] Engineering Department, Data Science Technology Study Program, Faculty of Advanced Technology and Multi-discipline, Universitas Airlangga, Indonesia
[3] Information System Study Program, Department of Industrial and System Engineering, Telkom University, Surabaya Campus, Indonesia
[4] Department of Computer System and Technology, Faculty of Computer Science and Information Technology, University of Malaya, Malaysia
关键词
Logistic regression;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2746 / 2757
相关论文
共 50 条
  • [1] The Model of Mixed Geographically Weighted Regression (MGWR) for Poverty Rate in Central Java']Java
    Darsyah, M. Y.
    Wasono, R.
    Agustina, M. F.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2015, 53 (06): : 114 - 121
  • [2] Multiscale Geographically Weighted Regression (MGWR)
    Fotheringham, A. Stewart
    Yang, Wenbai
    Kang, Wei
    ANNALS OF THE AMERICAN ASSOCIATION OF GEOGRAPHERS, 2017, 107 (06) : 1247 - 1265
  • [3] Modeling the Amount of Poverty in Central Java using Geographically Weighted Regression
    Mursito, Theresia Prabandari Ayu Pawestri
    Berlianto, Michael Christian
    An'amtaadinindra, Yoosove
    Edbert, Ivan Sebastian
    Ohyver, Margaretha
    2022 International Conference on Science and Technology, ICOSTECH 2022, 2022,
  • [4] On the estimation and testing of mixed geographically weighted regression models
    Wei, Chuan-Hua
    Qi, Fei
    ECONOMIC MODELLING, 2012, 29 (06) : 2615 - 2620
  • [5] Geographically weighted regression model on poverty indicator
    Slamet, I.
    Nugroho, N. F. T. A.
    Muslich
    FIRST AHMAD DAHLAN INTERNATIONAL CONFERENCE ON MATHEMATICS AND MATHEMATICS EDUCATION, 2018, 943
  • [6] Review on Geographically Weighted Regression (GWR) approach in spatial analysis
    Sulekan, Ayuna
    Jamaludin, Shariffah Suhaila Syed
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2020, 16 (02): : 173 - 177
  • [7] EXPLANATORY ANALYSES OF WORK TRIP GENERATION USING MIXED GEOGRAPHICALLY WEIGHTED REGRESSION (MGWR)
    Shahri, M.
    Ghannadi, M. A.
    ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 10-4, 2023, : 707 - 714
  • [8] Testing spatial heteroscedasticity in mixed geographically weighted regression models
    Shen, Si-Lian
    Yan, Wen-Lu
    Cui, Jian-Ling
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (15) : 3409 - 3426
  • [9] Efficient estimation of heteroscedastic mixed geographically weighted regression models
    Chang-Lin Mei
    Feng Chen
    Wen-Tao Wang
    Peng-Cheng Yang
    Si-Lian Shen
    The Annals of Regional Science, 2021, 66 : 185 - 206
  • [10] Efficient estimation of heteroscedastic mixed geographically weighted regression models
    Mei, Chang-Lin
    Chen, Feng
    Wang, Wen-Tao
    Yang, Peng-Cheng
    Shen, Si-Lian
    ANNALS OF REGIONAL SCIENCE, 2021, 66 (01): : 185 - 206