Generative Adversarial Networks for Electroencephalogram Signal Analysis: A Mini Review

被引:1
|
作者
Wang, Junkongshuai [1 ]
Mu, Wei [1 ]
Wang, Aiping [1 ]
Wang, Lu [1 ]
Han, Jiaguan [1 ]
Wang, Pengchao [1 ]
Niu, Lan [2 ]
Bin, Jianxiong [2 ]
Zhang, Lihua [1 ,2 ]
Kang, Xiaoyang [1 ,2 ,3 ,4 ]
机构
[1] Fudan Univ, Inst Meta Med,Acad Engn & Technol,Lab Neural Inte, Minist Educ,Inst AI & Robot,State Key Lab Med Neu, MOE Frontiers Ctr Brain Sci,Engn Res Ctr AI & Rob, Shanghai, Peoples R China
[2] Ji Hua Lab, Foshan, Guangdong, Peoples R China
[3] Fudan Univ, Yiwu Res Inst, Chengbei Rd, Yiwu City 322000, Zhejiang, Peoples R China
[4] Zhejiang Lab, Res Ctr Intelligent Sensing, Hangzhou 311100, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Generative adversarial network (GAN); braincomputer interface (BCI); electroencephalography (EEG); data augmentation;
D O I
10.1109/BCI57258.2023.10078666
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain-computer interface (BCI) technology based on electroencephalography (EEG) signals is growing rapidly and attracting widespread attention. However, due to the EEG acquisition methods, the quality and quantity of EEG signals are not able to be guaranteed. To alleviate the problems caused by the lack of data, in this paper, we introduce the applications of EEG signals using generative adversarial networks (GANs) which have shown great performance in image data augmentation and other time series data and then discuss their performance.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A Review on Generative Adversarial Networks for Power System Applications
    Shao Z.
    Zhang C.
    Chen F.
    Xie Y.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2023, 43 (03): : 987 - 1003
  • [42] Single-Channel Signal Separation and Deconvolution with Generative Adversarial Networks
    Kong, Qiuqiang
    Xu, Yong
    Jackson, Philip J. B.
    Wang, Wenwu
    Plumbley, Mark D.
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 2747 - 2753
  • [43] COMPOSING GRAPHICAL MODELS WITH GENERATIVE ADVERSARIAL NETWORKS FOR EEG SIGNAL MODELING
    Khuong Vo
    Vishwanath, Manoj
    Srinivasan, Ramesh
    Dutt, Nikil
    Cao, Hung
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1231 - 1235
  • [44] Generative adversarial networks for unbalanced fetal heart rate signal classification
    Puspitasari, Riskyana Dewi Intan
    Ma'sum, M. Anwar
    Alhamidi, Machmud R.
    Kurnianingsih
    Jatmiko, Wisnu
    ICT EXPRESS, 2022, 8 (02): : 239 - 243
  • [45] Radio Frequency Signal Prediction using Online Generative Adversarial Networks
    Ma, Ling
    Lee, Yee Hui
    Biswas, Anik Naha
    Yang, Xingguang
    Chui, Chee-Cheon
    2024 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND INC/USNCURSI RADIO SCIENCE MEETING, AP-S/INC-USNC-URSI 2024, 2024, : 2193 - 2194
  • [46] Generative adversarial networks for scintillation signal simulation in EXO-200
    Li, S.
    Ostrovskiy, I.
    Li, Z.
    Yang, L.
    Al Kharusi, S.
    Anton, G.
    Barbeau, P. S.
    Badhrees, I.
    Beck, D.
    Beloov, V.
    Bhatta, T.
    Breidenbach, M.
    Brunner, T.
    Cao, G. F.
    Cen, W. R.
    Chambers, C.
    Cleveland, B.
    Coon, M.
    Craycraft, A.
    Daniels, T.
    Darroch, L.
    Daugherty, S. J.
    Davis, J.
    Delaquis, S.
    Mesrobian-Kabakian, A. Der
    DeVoe, R.
    Dilling, J.
    Dolgolenko, A.
    Dolinski, M. J.
    Echevers, J.
    Fairbank, W., Jr.
    Fairbank, D.
    Farine, J.
    Feyzbakhsh, S.
    Fierlinger, P.
    Fu, Y. S.
    Fudenberg, D.
    Gautam, P.
    Gornea, R.
    Gratta, G.
    Hall, C.
    Hansen, E. V.
    Hoessl, J.
    Hufschmidt, P.
    Hughes, M.
    Iverson, A.
    Jamil, A.
    Jessiman, C.
    Jewell, M. J.
    Johnson, A.
    JOURNAL OF INSTRUMENTATION, 2023, 18 (06)
  • [47] Accuracy of Using Generative Adversarial Networks for Glaucoma Detection: Systematic Review and Bibliometric Analysis
    Saeed, Ali Q.
    Abdullah, Siti Norul Huda Sheikh
    Che-Hamzah, Jemaima
    Ghani, Ahmad Tarmizi Abdul
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2021, 23 (09)
  • [48] On the application of generative adversarial networks for nonlinear modal analysis
    Tsialiamanis, G.
    Champneys, M. D.
    Dervilis, N.
    Wagg, D. J.
    Worden, K.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 166
  • [49] An Error Analysis of Generative Adversarial Networks for Learning Distributions
    Huang, Jian
    Jiao, Yuling
    Li, Zhen
    Liu, Shiao
    Wang, Yang
    Yang, Yunfei
    Journal of Machine Learning Research, 2022, 23
  • [50] An Error Analysis of Generative Adversarial Networks for Learning Distributions
    Huang, Jian
    Jiao, Yuling
    Li, Zhen
    Liu, Shiao
    Wang, Yang
    Yang, Yunfei
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23