Generative Adversarial Networks for Electroencephalogram Signal Analysis: A Mini Review

被引:1
|
作者
Wang, Junkongshuai [1 ]
Mu, Wei [1 ]
Wang, Aiping [1 ]
Wang, Lu [1 ]
Han, Jiaguan [1 ]
Wang, Pengchao [1 ]
Niu, Lan [2 ]
Bin, Jianxiong [2 ]
Zhang, Lihua [1 ,2 ]
Kang, Xiaoyang [1 ,2 ,3 ,4 ]
机构
[1] Fudan Univ, Inst Meta Med,Acad Engn & Technol,Lab Neural Inte, Minist Educ,Inst AI & Robot,State Key Lab Med Neu, MOE Frontiers Ctr Brain Sci,Engn Res Ctr AI & Rob, Shanghai, Peoples R China
[2] Ji Hua Lab, Foshan, Guangdong, Peoples R China
[3] Fudan Univ, Yiwu Res Inst, Chengbei Rd, Yiwu City 322000, Zhejiang, Peoples R China
[4] Zhejiang Lab, Res Ctr Intelligent Sensing, Hangzhou 311100, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Generative adversarial network (GAN); braincomputer interface (BCI); electroencephalography (EEG); data augmentation;
D O I
10.1109/BCI57258.2023.10078666
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain-computer interface (BCI) technology based on electroencephalography (EEG) signals is growing rapidly and attracting widespread attention. However, due to the EEG acquisition methods, the quality and quantity of EEG signals are not able to be guaranteed. To alleviate the problems caused by the lack of data, in this paper, we introduce the applications of EEG signals using generative adversarial networks (GANs) which have shown great performance in image data augmentation and other time series data and then discuss their performance.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] A Bibliometric Analysis of Papers on Generative Adversarial Networks
    Jiao, Fangyu
    Yu, Bei
    Chen, Lang
    Chen, Dunkui
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, NETWORK SECURITY AND COMMUNICATION TECHNOLOGY, CNSCT 2024, 2024, : 434 - 439
  • [22] Generative adversarial networks in EEG analysis: an overview
    Ahmed G. Habashi
    Ahmed M. Azab
    Seif Eldawlatly
    Gamal M. Aly
    Journal of NeuroEngineering and Rehabilitation, 20
  • [23] Generative adversarial networks in EEG analysis: an overview
    Habashi, Ahmed G.
    Azab, Ahmed M.
    Eldawlatly, Seif
    Aly, Gamal M.
    JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2023, 20 (01)
  • [24] Comparative Analysis of Generative Adversarial Networks and their Variants
    Tahmid, Marjana
    Alam, Samiul
    Akram, Mohammad Kalim
    2020 23RD INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (ICCIT 2020), 2020,
  • [25] A review and meta-analysis of generative adversarial networks and their applications in remote sensing
    Jozdani, Shahab
    Chen, Dongmei
    Pouliot, Darren
    Johnson, Brian Alan
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 108
  • [26] A review of deep learning and Generative Adversarial Networks applications in medical image analysis
    Sindhura, D. N.
    Pai, Radhika M.
    Bhat, Shyamasunder N.
    Pai, Manohara M. M.
    MULTIMEDIA SYSTEMS, 2024, 30 (03)
  • [27] Generative adversarial networks in medical image segmentation: A review
    Xun, Siyi
    Li, Dengwang
    Zhu, Hui
    Chen, Min
    Wang, Jianbo
    Li, Jie
    Chen, Meirong
    Wu, Bing
    Zhang, Hua
    Chai, Xiangfei
    Jiang, Zekun
    Zhang, Yan
    Huang, Pu
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 140
  • [28] Applications of Generative Adversarial Networks (GANs): An Updated Review
    Alqahtani, Hamed
    Kavakli-Thorne, Manolya
    Kumar, Gulshan
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2021, 28 (02) : 525 - 552
  • [29] Generative Adversarial Networks
    Goodfellow, Ian
    Pouget-Abadie, Jean
    Mirza, Mehdi
    Xu, Bing
    Warde-Farley, David
    Ozair, Sherjil
    Courville, Aaron
    Bengio, Yoshua
    COMMUNICATIONS OF THE ACM, 2020, 63 (11) : 139 - 144
  • [30] A Review of Generative Adversarial Networks for Computer Vision Tasks
    Simion, Ana-Maria
    Radu, Serban
    Florea, Adina Magda
    ELECTRONICS, 2024, 13 (04)