Generative Adversarial Networks for Electroencephalogram Signal Analysis: A Mini Review

被引:1
|
作者
Wang, Junkongshuai [1 ]
Mu, Wei [1 ]
Wang, Aiping [1 ]
Wang, Lu [1 ]
Han, Jiaguan [1 ]
Wang, Pengchao [1 ]
Niu, Lan [2 ]
Bin, Jianxiong [2 ]
Zhang, Lihua [1 ,2 ]
Kang, Xiaoyang [1 ,2 ,3 ,4 ]
机构
[1] Fudan Univ, Inst Meta Med,Acad Engn & Technol,Lab Neural Inte, Minist Educ,Inst AI & Robot,State Key Lab Med Neu, MOE Frontiers Ctr Brain Sci,Engn Res Ctr AI & Rob, Shanghai, Peoples R China
[2] Ji Hua Lab, Foshan, Guangdong, Peoples R China
[3] Fudan Univ, Yiwu Res Inst, Chengbei Rd, Yiwu City 322000, Zhejiang, Peoples R China
[4] Zhejiang Lab, Res Ctr Intelligent Sensing, Hangzhou 311100, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Generative adversarial network (GAN); braincomputer interface (BCI); electroencephalography (EEG); data augmentation;
D O I
10.1109/BCI57258.2023.10078666
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain-computer interface (BCI) technology based on electroencephalography (EEG) signals is growing rapidly and attracting widespread attention. However, due to the EEG acquisition methods, the quality and quantity of EEG signals are not able to be guaranteed. To alleviate the problems caused by the lack of data, in this paper, we introduce the applications of EEG signals using generative adversarial networks (GANs) which have shown great performance in image data augmentation and other time series data and then discuss their performance.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Applications of Generative Adversarial Networks (GANs): An Updated Review
    Hamed Alqahtani
    Manolya Kavakli-Thorne
    Gulshan Kumar
    Archives of Computational Methods in Engineering, 2021, 28 : 525 - 552
  • [32] Generative Adversarial Networks in Brain Imaging: A Narrative Review
    Laino, Maria Elena
    Cancian, Pierandrea
    Politi, Letterio Salvatore
    Della Porta, Matteo Giovanni
    Saba, Luca
    Savevski, Victor
    JOURNAL OF IMAGING, 2022, 8 (04)
  • [33] Generative adversarial networks for handwriting image generation: a review
    Elanwar, Randa
    Betke, Margrit
    VISUAL COMPUTER, 2025, 41 (04): : 2299 - 2322
  • [34] Generative Adversarial Networks in Medical Image augmentation: A review
    Chen, Yizhou
    Yang, Xu-Hua
    Wei, Zihan
    Heidari, Ali Asghar
    Zheng, Nenggan
    Li, Zhicheng
    Chen, Huiling
    Hu, Haigen
    Zhou, Qianwei
    Guan, Qiu
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 144
  • [35] Generative adversarial networks in dental imaging: a systematic review
    Sujin Yang
    Kee-Deog Kim
    Eiichiro Ariji
    Yoshitaka Kise
    Oral Radiology, 2024, 40 : 93 - 108
  • [36] A review of generative adversarial networks and its application in cybersecurity
    Yinka-Banjo, Chika
    Ugot, Ogban-Asuquo
    ARTIFICIAL INTELLIGENCE REVIEW, 2020, 53 (03) : 1721 - 1736
  • [37] A review of generative adversarial networks and its application in cybersecurity
    Chika Yinka-Banjo
    Ogban-Asuquo Ugot
    Artificial Intelligence Review, 2020, 53 : 1721 - 1736
  • [38] Generative Adversarial Networks in Human Emotion Synthesis: A Review
    Hajarolasvadi, Noushin
    Ramirez, Miguel Arjona
    Beccaro, Wesley
    Demirel, Hasan
    IEEE ACCESS, 2020, 8 : 218499 - 218529
  • [39] A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
    Gui, Jie
    Sun, Zhenan
    Wen, Yonggang
    Tao, Dacheng
    Ye, Jieping
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (04) : 3313 - 3332
  • [40] Generative adversarial networks in dental imaging: a systematic review
    Yang, Sujin
    Kim, Kee-Deog
    Ariji, Eiichiro
    Kise, Yoshitaka
    ORAL RADIOLOGY, 2024, 40 (02) : 93 - 108