Generative adversarial networks for scintillation signal simulation in EXO-200

被引:2
|
作者
Li, S. [1 ]
Ostrovskiy, I. [2 ]
Li, Z. [3 ]
Yang, L. [3 ]
Al Kharusi, S. [4 ]
Anton, G. [5 ]
Barbeau, P. S. [7 ,8 ]
Badhrees, I. [6 ]
Beck, D. [1 ]
Beloov, V. [9 ]
Bhatta, T. [10 ]
Breidenbach, M. [11 ]
Brunner, T. [4 ]
Cao, G. F. [13 ]
Cen, W. R. [13 ]
Chambers, C. [4 ,12 ]
Cleveland, B. [14 ]
Coon, M. [1 ]
Craycraft, A. [15 ]
Daniels, T. [16 ]
Darroch, L. [4 ]
Daugherty, S. J. [17 ,18 ]
Davis, J. [11 ]
Delaquis, S. [11 ]
Mesrobian-Kabakian, A. Der [14 ]
DeVoe, R. [19 ]
Dilling, J. [12 ]
Dolgolenko, A. [9 ]
Dolinski, M. J. [20 ]
Echevers, J. [1 ]
Fairbank, W., Jr. [15 ]
Fairbank, D. [15 ]
Farine, J. [14 ]
Feyzbakhsh, S. [21 ,22 ]
Fierlinger, P. [23 ,24 ]
Fu, Y. S. [13 ]
Fudenberg, D. [19 ]
Gautam, P. [20 ]
Gornea, R. [6 ]
Gratta, G. [19 ]
Hall, C. [25 ]
Hansen, E. V. [20 ]
Hoessl, J. [5 ]
Hufschmidt, P. [5 ]
Hughes, M. [2 ]
Iverson, A. [15 ]
Jamil, A. [26 ]
Jessiman, C. [6 ]
Jewell, M. J. [19 ]
Johnson, A. [11 ]
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA
[3] Univ Calif San Diego, Phys Dept, La Jolla, CA 92093 USA
[4] McGill Univ, Phys Dept, Montreal, PQ H3A 2T8, Canada
[5] Friedrich Alexander Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys ECAP, D-91058 Erlangen, Germany
[6] Carleton Univ, Phys Dept, Ottawa, ON K1S 5B6, Canada
[7] Duke Univ, Dept Phys, Durham, NC 27708 USA
[8] Triangle Univ Nucl Lab TUNL, Durham, NC 27708 USA
[9] Inst Theoret & Expt Phys, Moscow 117218, Russia
[10] Univ South Dakota, Dept Phys, Vermillion, SD 57069 USA
[11] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[12] TRIUMF, Vancouver, BC V6T 2A3, Canada
[13] Inst High Energy Phys, Beijing 100049, Peoples R China
[14] Laurentian Univ, Phys Dept, Sudbury, ON P3E 2C6, Canada
[15] Colorado State Univ, Phys Dept, Ft Collins, CO 80523 USA
[16] Univ North Carolina Wilmington, Dept Phys & Phys Oceanog, Wilmington, NC 28403 USA
[17] Indiana Univ, Phys Dept, Bloomington, IN 47405 USA
[18] Indiana Univ, CEEM, Bloomington, IN 47405 USA
[19] Stanford Univ, Phys Dept, Stanford, CA 94305 USA
[20] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA
[21] Univ Massachusetts, Amherst Ctr Fundamental Interact, Amherst, MA 01003 USA
[22] Univ Massachusetts, Phys Dept, Amherst, MA 01003 USA
[23] Tech Univ Munich, Phys Dept, D-80805 Garching, Germany
[24] Tech Univ Munich, Excellence Cluster Universe, D-80805 Garching, Germany
[25] Univ Maryland, Phys Dept, College Pk, MD 20742 USA
[26] Yale Univ, Dept Phys, Wright Lab, New Haven, CT 06511 USA
[27] IBS Ctr Underground Phys, Daejeon 34126, South Korea
[28] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[29] CALTECH, Kellogg Lab, Pasadena, CA 91125 USA
[30] Univ Bern, Albert Einstein Ctr, LHEP, Bern, Switzerland
基金
加拿大自然科学与工程研究理事会;
关键词
Analysis and statistical methods; Double-beta decay detectors; Simulation methods and programs; Time projection chambers;
D O I
10.1088/1748-0221/18/06/P06005
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Generative Adversarial Networks trained on samples of simulated or actual events have been proposed as a way of generating large simulated datasets at a reduced computational cost. In this work, a novel approach to perform the simulation of photodetector signals from the time projection chamber of the EXO-200 experiment is demonstrated. The method is based on a Wasserstein Generative Adversarial Network - a deep learning technique allowing for implicit non-parametric estimation of the population distribution for a given set of objects. Our network is trained on real calibration data using raw scintillation waveforms as input. We find that it is able to produce high-quality simulated waveforms an order of magnitude faster than the traditional simulation approach and, importantly, generalize from the training sample and discern salient high-level features of the data. In particular, the network correctly deduces position dependency of scintillation light response in the detector and correctly recognizes dead photodetector channels. The network output is then integrated into the EXO-200 analysis framework to show that the standard EXO-200 reconstruction routine processes the simulated waveforms to produce energy distributions comparable to that of real waveforms. Finally, the remaining discrepancies and potential ways to improve the approach further are highlighted.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] EXO-200
    Neilson, Russell
    XXIII CONFERENCE ON NEUTRINO PHYSICS AND ASTROPHYSICS, 2008, 136
  • [2] Results from EXO-200
    Marino, M. G.
    XXVI INTERNATIONAL CONFERENCE ON NEUTRINO PHYSICS AND ASTROPHYSICS (NEUTRINO 2014), 2015, 1666
  • [3] Results from EXO-200
    Auty, D. J.
    TOPICAL RESEARCH MEETING: PROSPECTS IN NEUTRINO PHYSICS (NUPHYS2013), 2015, 598
  • [4] Search for nucleon decays with EXO-200
    Albert, J. B.
    Anton, G.
    Badhrees, I.
    Barbeau, P. S.
    Bayerlein, R.
    Beck, D.
    Belov, V.
    Breidenbach, M.
    Brunner, T.
    Cao, G. F.
    Cen, W. R.
    Chambers, C.
    Cleveland, B.
    Coon, M.
    Craycraft, A.
    Cree, W.
    Daniels, T.
    Danilov, M.
    Daugherty, S. J.
    Daughhetee, J.
    Davis, J.
    Delaquis, S.
    Mesrobian-Kabakian, A. Der
    DeVoe, R.
    Didberidze, T.
    Dilling, J.
    Dolgolenko, A.
    Dolinski, M. J.
    Fairbank, W., Jr.
    Farine, J.
    Feyzbakhsh, S.
    Fierlinger, P.
    Fudenberg, D.
    Gornea, R.
    Graham, K.
    Gratta, G.
    Hall, C.
    Hansen, E. V.
    Hoessl, J.
    Homiller, S.
    Hufschmidt, P.
    Hughes, M.
    Jamil, A.
    Jewell, M. J.
    Johnson, A.
    Johnston, S.
    Karelin, A.
    Kaufman, L. J.
    Koffas, T.
    Kravitz, S.
    PHYSICAL REVIEW D, 2018, 97 (07)
  • [5] Deep neural networks for energy and position reconstruction in EXO-200
    Delaquis, S.
    Jewell, M. J.
    Ostrovskiy, I.
    Weber, M.
    Ziegler, T.
    Dalmasson, J.
    Kaufman, L. J.
    Richards, T.
    Albert, J. B.
    Anton, G.
    Badhrees, I.
    Barbeau, P. S.
    Bayerlein, R.
    Beck, D.
    Belov, V.
    Breidenbach, M.
    Brunner, T.
    Cao, G. F.
    Cen, W. R.
    Chambers, C.
    Cleveland, B.
    Coon, M.
    Craycraft, A.
    Cree, W.
    Daniels, T.
    Danilov, M.
    Daugherty, S. J.
    Daughhetee, J.
    Davis, J.
    Mesrobian-Kabakian, A. Der
    DeVoe, R.
    Dilling, J.
    Dolgolenko, A.
    Dolinski, M. J.
    Fairbank, W., Jr.
    Farine, J.
    Feyzbakhsh, S.
    Fierlinger, P.
    Fudenberg, D.
    Gornea, R.
    Gratta, G.
    Hall, C.
    Hansen, E. V.
    Harris, D.
    Hoessl, J.
    Hufschmidt, P.
    Hughes, M.
    Iverson, A.
    Jamil, A.
    Johnson, A.
    JOURNAL OF INSTRUMENTATION, 2018, 13
  • [6] Measurement of the scintillation and ionization response of liquid xenon at MeV energies in the EXO-200 experiment
    Anton, G.
    Badhrees, I
    Barbeau, P. S.
    Beck, D.
    Belov, V
    Bhatta, T.
    Breidenbach, M.
    Brunner, T.
    Cao, G. F.
    Cen, W. R.
    Chambers, C.
    Cleveland, B.
    Coon, M.
    Craycraft, A.
    Daniels, T.
    Darroch, L.
    Daugherty, S. J.
    Davis, J.
    Delaquis, S.
    Mesrobian-Kabakian, A. Der
    DeVoe, R.
    Dilling, J.
    Dolgolenko, A.
    Dolinski, M. J.
    Echevers, J.
    Fairbank, W., Jr.
    Fairbank, D.
    Farine, J.
    Feyzbakhsh, S.
    Fierlinger, P.
    Fudenberg, D.
    Gautam, P.
    Gornea, R.
    Gratta, G.
    Hall, C.
    Hansen, E., V
    Hoessl, J.
    Hufschmidt, P.
    Hughes, M.
    Iverson, A.
    Jamil, A.
    Jessiman, C.
    Jewell, M. J.
    Johnson, A.
    Karelin, A.
    Kaufman, L. J.
    Koffas, T.
    Krucken, R.
    Kuchenkov, A.
    Kumar, K. S.
    PHYSICAL REVIEW C, 2020, 101 (06)
  • [7] Cosmogenic backgrounds to 0νββ in EXO-200
    Albert, J. B.
    Auty, D. J.
    Barbeau, P. S.
    Beck, D.
    Belov, V.
    Breidenbach, M.
    Brunner, T.
    Burenkov, A.
    Cao, G. F.
    Chambers, C.
    Cleveland, B.
    Coon, M.
    Craycraft, A.
    Daniels, T.
    Danilov, M.
    Daugherty, S. J.
    Davis, J.
    Delaquis, S.
    Der Mesrobian-Kabakian, A.
    DeVoe, R.
    Didberidze, T.
    Dilling, J.
    Dolgolenko, A.
    Dolinski, M. J.
    Dunford, M.
    Fairbank, W., Jr.
    Farine, J.
    Feldmeier, W.
    Feyzbakhsh, S.
    Fierlinger, P.
    Fudenberg, D.
    Gornea, R.
    Graham, K.
    Gratta, G.
    Hall, C.
    Herrin, S.
    Hughes, M.
    Jewell, M. J.
    Johnson, A.
    Johnson, T. N.
    Johnston, S.
    Karelin, A.
    Kaufman, L. J.
    Killick, R.
    Koffas, T.
    Kravitz, S.
    Krucken, R.
    Kuchenkov, A.
    Kumar, K. S.
    Leonard, D. S.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (04):
  • [8] Latest results from EXO-200
    Tosi, D.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2014, 37 (03): : 197 - 199
  • [9] Recent Results from EXO-200
    Daniels, T.
    13TH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS, TAUP 2013, 2015, 61 : 221 - 222
  • [10] EXO-200 results and cosmogenic backgrounds
    Belov, V. A.
    INTERNATIONAL CONFERENCE ON PARTICLE PHYSICS AND ASTROPHYSICS, 2017, 798