Optimal Possibly Nonlinear 3-PIR Codes of Small Size

被引:0
|
作者
Hollmann, Henk D. L. [1 ]
Luhaaar, Urmas [2 ]
机构
[1] Univ Tartu, Inst Comp Sci, EE-50409 Tartu, Estonia
[2] Univ Tartu, Inst Math & Stat, EE-51009 Tartu, Estonia
来源
关键词
Batch codes; PIR codes; Nonlinear code; Hamming code; Packing design;
D O I
10.1007/978-3-031-22944-2_9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
First, we state a generalization of the minimum-distance bound for PIR codes. Then we describe a construction for linear PIR codes using packing designs and use it to construct some new 5-PIR codes. Finally, we show that no encoder (linear or nonlinear) for the binary r-th order Hamming code produces a 3-PIR code except when r = 2. We use these results to determine the smallest length of a binary (possibly nonlinear) 3-PIR code of combinatorial dimension up to 6. A binary 3-PIR code of length 11 and size 27 is necessarily nonlinear (as a PIR code), and we pose the existence of such a code as an open problem.
引用
收藏
页码:159 / 168
页数:10
相关论文
共 50 条
  • [1] PIR Array Codes with Optimal PIR Rates
    Blackburn, Simon R.
    Etzion, Tuvi
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 2658 - 2662
  • [2] Nearly Optimal Constructions of PIR and Batch Codes
    Asi, Hilal
    Yaakobi, Eitan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (02) : 947 - 964
  • [3] Nearly Optimal Constructions of PIR and Batch Codes
    Asi, Hilal
    Yaakobi, Eitan
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 151 - 155
  • [4] PIR Array Codes With Optimal Virtual Server Rate
    Blackburn, Simon R.
    Etzion, Tuvi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (10) : 6136 - 6145
  • [5] Optimal Binary Switch Codes with Small Query Size
    Wang, Zhiying
    Kiah, Han Mao
    Cassuto, Yuval
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 636 - 640
  • [6] Optimal nonlinear codes
    MacLeod, DLA
    vonderTwer, T
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1997, 38 (04) : 1172 - 1172
  • [7] On Optimal Nonlinear Systematic Codes
    Guerrini, Eleonora
    Meneghetti, Alessio
    Sala, Massimiliano
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (06) : 3103 - 3112
  • [8] Small-d MSR Codes With Optimal Access, Optimal Sub-Packetization, and Linear Field Size
    Vajha, Myna
    Balaji, S. B.
    Kumar, P. Vijay
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (07) : 4303 - 4332
  • [9] The pleistochrome: optimal nonlinear codes and colour opponency
    MacLeod, D. I. A.
    von der Twer, T.
    PERCEPTION, 2000, 29 : 126 - 126
  • [10] Optimal nonlinear codes for the perception of natural colours
    von der Twer, T
    MacLeod, DIA
    NETWORK-COMPUTATION IN NEURAL SYSTEMS, 2001, 12 (03) : 395 - 407