Optimal Possibly Nonlinear 3-PIR Codes of Small Size

被引:0
|
作者
Hollmann, Henk D. L. [1 ]
Luhaaar, Urmas [2 ]
机构
[1] Univ Tartu, Inst Comp Sci, EE-50409 Tartu, Estonia
[2] Univ Tartu, Inst Math & Stat, EE-51009 Tartu, Estonia
来源
关键词
Batch codes; PIR codes; Nonlinear code; Hamming code; Packing design;
D O I
10.1007/978-3-031-22944-2_9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
First, we state a generalization of the minimum-distance bound for PIR codes. Then we describe a construction for linear PIR codes using packing designs and use it to construct some new 5-PIR codes. Finally, we show that no encoder (linear or nonlinear) for the binary r-th order Hamming code produces a 3-PIR code except when r = 2. We use these results to determine the smallest length of a binary (possibly nonlinear) 3-PIR code of combinatorial dimension up to 6. A binary 3-PIR code of length 11 and size 27 is necessarily nonlinear (as a PIR code), and we pose the existence of such a code as an open problem.
引用
收藏
页码:159 / 168
页数:10
相关论文
共 50 条
  • [41] The completion of optimal cyclic quaternary codes of weight 3 and distance 3
    Lan, Liantao
    Chang, Yanxun
    Wang, Lidong
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (04) : 851 - 862
  • [42] The completion of optimal cyclic quaternary codes of weight 3 and distance 3
    Liantao Lan
    Yanxun Chang
    Lidong Wang
    Designs, Codes and Cryptography, 2022, 90 : 851 - 862
  • [43] Optimal harvesting for nonlinear size-structured population dynamics
    Kato, Nobuyuki
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) : 1388 - 1398
  • [44] Long Optimal and Small-Defect LRC Codes With Unbounded Minimum Distances
    Chen, Hao
    Weng, Jian
    Luo, Weiqi
    Xu, Liqing
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (05) : 2786 - 2792
  • [45] Optimal (v, 4, 2, 1) optical orthogonal codes with small parameters
    Baicheva, Tsonka
    Topalova, Svetlana
    JOURNAL OF COMBINATORIAL DESIGNS, 2012, 20 (02) : 142 - 160
  • [46] Bounds and Constructions of Singleton-Optimal Locally Repairable Codes With Small Localities
    Fang, Weijun
    Tao, Ran
    Fu, Fang-Wei
    Chen, Bin
    Xia, Shu-Tao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (10) : 6842 - 6856
  • [47] Linear and Nonlinear Binary Kernels of Polar Codes of Small Dimensions With Maximum Exponents
    Lin, Hsien-Ping
    Lin, Shu
    Abdel-Ghaffar, Khaled A. S.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (10) : 5253 - 5270
  • [48] The sizes of optimal (n, 4, λ, 3) optical orthogonal codes
    Huang, Yuemei
    Chang, Yanxun
    DISCRETE MATHEMATICS, 2012, 312 (21) : 3128 - 3139
  • [49] A New Class of Optimal 3-splitting Authentication Codes
    Jinhua Wang
    Designs, Codes and Cryptography, 2006, 38 : 373 - 381
  • [50] A new class of optimal 3-splitting authentication codes
    Jinhua Wang
    Designs, Codes and Cryptography, 2007, 45 : 391 - 391