Optimal Possibly Nonlinear 3-PIR Codes of Small Size

被引:0
|
作者
Hollmann, Henk D. L. [1 ]
Luhaaar, Urmas [2 ]
机构
[1] Univ Tartu, Inst Comp Sci, EE-50409 Tartu, Estonia
[2] Univ Tartu, Inst Math & Stat, EE-51009 Tartu, Estonia
来源
关键词
Batch codes; PIR codes; Nonlinear code; Hamming code; Packing design;
D O I
10.1007/978-3-031-22944-2_9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
First, we state a generalization of the minimum-distance bound for PIR codes. Then we describe a construction for linear PIR codes using packing designs and use it to construct some new 5-PIR codes. Finally, we show that no encoder (linear or nonlinear) for the binary r-th order Hamming code produces a 3-PIR code except when r = 2. We use these results to determine the smallest length of a binary (possibly nonlinear) 3-PIR code of combinatorial dimension up to 6. A binary 3-PIR code of length 11 and size 27 is necessarily nonlinear (as a PIR code), and we pose the existence of such a code as an open problem.
引用
收藏
页码:159 / 168
页数:10
相关论文
共 50 条
  • [21] Explicit Rate-Optimal Streaming Codes with Smaller Field Size
    Vajha, Myna
    Ramkumar, Vinayak
    Krishnan, M. Nikhil
    Kumar, P. Vijay
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 736 - 741
  • [22] Explicit Rate-Optimal Streaming Codes With Smaller Field Size
    Vajha, Myna
    Ramkumar, Vinayak
    Krishnan, M. Nikhil
    Kumar, P. Vijay
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (05) : 3242 - 3261
  • [23] A Construction of Maximally Recoverable Codes With Order-Optimal Field Size
    Cai, Han
    Miao, Ying
    Schwartz, Moshe
    Tang, Xiaohu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (01) : 204 - 212
  • [24] On the size of optimal binary codes of length 9 and covering radius 1
    Östergård, PRJ
    Blass, U
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (06) : 2556 - 2557
  • [25] Bayesian approximations and extensions: Optimal decisions for small brains and possibly big ones too
    Lange, Alexander
    Dukas, Reuven
    JOURNAL OF THEORETICAL BIOLOGY, 2009, 259 (03) : 503 - 516
  • [26] Optimal constant weight covering codes and nonuniform group divisible 3-designs with block size four
    Zhang, Xiande
    Zhang, Hui
    Ge, Gennian
    DESIGNS CODES AND CRYPTOGRAPHY, 2012, 62 (02) : 143 - 160
  • [27] Optimal constant weight covering codes and nonuniform group divisible 3-designs with block size four
    Xiande Zhang
    Hui Zhang
    Gennian Ge
    Designs, Codes and Cryptography, 2012, 62 : 143 - 160
  • [28] Optimal Locally Repairable Codes of Distance 3 and 4 via Cyclic Codes
    Luo, Yuan
    Xing, Chaoping
    Yuan, Chen
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (02) : 1048 - 1053
  • [29] Several constructions of optimal LCD codes over small finite fields
    Li, Shitao
    Shi, Minjia
    Liu, Huizhou
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2024, 16 (04): : 779 - 800
  • [30] Optimal Linear and Cyclic Locally Repairable Codes over Small Fields
    Zeh, Alexander
    Yaakobi, Eitan
    2015 IEEE INFORMATION THEORY WORKSHOP (ITW), 2015,