Optimal Possibly Nonlinear 3-PIR Codes of Small Size

被引:0
|
作者
Hollmann, Henk D. L. [1 ]
Luhaaar, Urmas [2 ]
机构
[1] Univ Tartu, Inst Comp Sci, EE-50409 Tartu, Estonia
[2] Univ Tartu, Inst Math & Stat, EE-51009 Tartu, Estonia
来源
关键词
Batch codes; PIR codes; Nonlinear code; Hamming code; Packing design;
D O I
10.1007/978-3-031-22944-2_9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
First, we state a generalization of the minimum-distance bound for PIR codes. Then we describe a construction for linear PIR codes using packing designs and use it to construct some new 5-PIR codes. Finally, we show that no encoder (linear or nonlinear) for the binary r-th order Hamming code produces a 3-PIR code except when r = 2. We use these results to determine the smallest length of a binary (possibly nonlinear) 3-PIR code of combinatorial dimension up to 6. A binary 3-PIR code of length 11 and size 27 is necessarily nonlinear (as a PIR code), and we pose the existence of such a code as an open problem.
引用
收藏
页码:159 / 168
页数:10
相关论文
共 50 条