On Optimal Nonlinear Systematic Codes

被引:0
|
作者
Guerrini, Eleonora [1 ]
Meneghetti, Alessio [2 ]
Sala, Massimiliano [2 ]
机构
[1] Univ Montpellier 2, Lab Informat Robot & Microelect Montpellier, F-34090 Montpellier, France
[2] Univ Trento, Dept Math, I-38123 Trento, Italy
关键词
Codes; Hamming distance; upper bound; ERROR-CORRECTING CODES; LINEAR CODES; BINARY-CODES; GRIESMER; NONEXISTENCE; BOUNDS; <N;
D O I
10.1109/TIT.2016.2553142
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Most bounds on the size of codes hold for any code, whether linear or not. Notably, the Griesmer bound holds only in the linear case and so optimal linear codes are not necessarily optimal codes. In this paper, we identify code parameters (q, d, k), namely, field size, minimum distance, and combinatorial dimension, for which the Griesmer bound also holds in the (systematic) nonlinear case. Moreover, we show that the Griesmer bound does not necessarily hold for a systematic code by explicit construction of a family of optimal systematic binary codes. On the other hand, we are able to provide some versions of the Griesmer bound holding for all the systematic codes.
引用
收藏
页码:3103 / 3112
页数:10
相关论文
共 50 条
  • [1] Optimal nonlinear codes
    MacLeod, DLA
    vonderTwer, T
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1997, 38 (04) : 1172 - 1172
  • [2] The pleistochrome: optimal nonlinear codes and colour opponency
    MacLeod, D. I. A.
    von der Twer, T.
    PERCEPTION, 2000, 29 : 126 - 126
  • [3] Optimal nonlinear codes for the perception of natural colours
    von der Twer, T
    MacLeod, DIA
    NETWORK-COMPUTATION IN NEURAL SYSTEMS, 2001, 12 (03) : 395 - 407
  • [4] COMPUTING THE DISTANCE DISTRIBUTION OF SYSTEMATIC NONLINEAR CODES
    Guerrini, Eleonora
    Orsini, Emmanuela
    Sala, Massimiliano
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2010, 9 (02) : 241 - 256
  • [5] Optimal prefix codes for infinite alphabets with nonlinear costs
    Baer, Michael B.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (03) : 1273 - 1286
  • [6] A Systematic Framework for the Construction of Optimal Complete Complementary Codes
    Han, Chenggao
    Suehiro, Naoki
    Hashimoto, Takeshi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (09) : 6033 - 6042
  • [7] Optimal Systematic t-Deletion Correcting Codes
    Sima, Jin
    Gabrys, Ryan
    Bruck, Jehoshua
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 769 - 774
  • [8] Optimal Locally Repairable Systematic Codes Based on Packings
    Cai, Han
    Cheng, Minquan
    Fan, Cuiling
    Tang, Xiaohu
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (01) : 39 - 49
  • [9] Optimal Systematic Distributed Storage Codes with Fast Encoding
    Nakkiran, Preetum
    Rashmi, K. V.
    Ramchandran, Kannan
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 430 - 434
  • [10] Systematic Erasure Codes with Optimal Repair Bandwidth and Storage
    Liu, Qing
    Feng, Dan
    Jiang, Hong
    Hu, Yuchong
    Jiao, Tianfeng
    ACM TRANSACTIONS ON STORAGE, 2017, 13 (03)