On Optimal Nonlinear Systematic Codes

被引:0
|
作者
Guerrini, Eleonora [1 ]
Meneghetti, Alessio [2 ]
Sala, Massimiliano [2 ]
机构
[1] Univ Montpellier 2, Lab Informat Robot & Microelect Montpellier, F-34090 Montpellier, France
[2] Univ Trento, Dept Math, I-38123 Trento, Italy
关键词
Codes; Hamming distance; upper bound; ERROR-CORRECTING CODES; LINEAR CODES; BINARY-CODES; GRIESMER; NONEXISTENCE; BOUNDS; <N;
D O I
10.1109/TIT.2016.2553142
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Most bounds on the size of codes hold for any code, whether linear or not. Notably, the Griesmer bound holds only in the linear case and so optimal linear codes are not necessarily optimal codes. In this paper, we identify code parameters (q, d, k), namely, field size, minimum distance, and combinatorial dimension, for which the Griesmer bound also holds in the (systematic) nonlinear case. Moreover, we show that the Griesmer bound does not necessarily hold for a systematic code by explicit construction of a family of optimal systematic binary codes. On the other hand, we are able to provide some versions of the Griesmer bound holding for all the systematic codes.
引用
收藏
页码:3103 / 3112
页数:10
相关论文
共 50 条
  • [11] Systematic authentication codes from highly nonlinear functions
    Ding, CS
    Niederreiter, H
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (10) : 2421 - 2428
  • [12] New class of nonlinear systematic error detecting codes
    Karpovsky, M
    Taubin, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) : 1818 - 1820
  • [13] MODIFIED PREPARATA CODES - OPTIMUM SYSTEMATIC NONLINEAR DOUBLE-ERROR-CORRECTING CODES
    MIYAKAWA, H
    IMAI, H
    NAKAJIMA, I
    ELECTRONICS & COMMUNICATIONS IN JAPAN, 1970, 53 (10): : 25 - &
  • [14] Optimal Possibly Nonlinear 3-PIR Codes of Small Size
    Hollmann, Henk D. L.
    Luhaaar, Urmas
    ARITHMETIC OF FINITE FIELDS, WAIFI 2022, 2023, 13638 : 159 - 168
  • [15] Z codes: General Systematic Erasure Codes with Optimal Repair Bandwidth and Storage for Distributed Storage Systems
    Liu, Qing
    Feng, Dan
    Jiang, Hong
    Hu, Yuchong
    Jiao, Tianfeng
    2015 IEEE 34TH SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS (SRDS), 2015, : 212 - 217
  • [16] Recommendations for optimal ICD codes to study neurologic conditions A systematic review
    St Germaine-Smith, Christine
    Metcalfe, Amy
    Pringsheim, Tamara
    Roberts, Jodie Irene
    Beck, Cynthia A.
    Hemmelgarn, Brenda R.
    McChesney, Jane
    Quan, Hude
    Jette, Nathalie
    NEUROLOGY, 2012, 79 (10) : 1049 - 1055
  • [17] OPTIMAL CODES
    ROBILLARD, P
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1969, 15 (06) : 734 - +
  • [18] Optimal prefix codes and Huffman codes
    Long, DY
    Jia, WJ
    Li, M
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2003, 80 (06) : 727 - 742
  • [19] Optimal codes as Tanner codes with cyclic component codes
    Hoholdt, Tom
    Pinero, Fernando
    Zeng, Peng
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 76 (01) : 37 - 47
  • [20] Optimal codes as Tanner codes with cyclic component codes
    Tom Høholdt
    Fernando Piñero
    Peng Zeng
    Designs, Codes and Cryptography, 2015, 76 : 37 - 47