Quantum cluster characters of Hall algebras revisited

被引:1
|
作者
Fu, Changjian [1 ]
Peng, Liangang [1 ]
Zhang, Haicheng [2 ]
机构
[1] SiChuan Univ, Dept Math, Chengdu 610064, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
来源
SELECTA MATHEMATICA-NEW SERIES | 2023年 / 29卷 / 01期
基金
中国国家自然科学基金;
关键词
Hall algebra of morphisms; Comultiplication; Integration map; Quantum cluster algebra; TRIANGULATED CATEGORIES; LIE-ALGEBRAS; ANALOG;
D O I
10.1007/s00029-022-00811-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Q be a finite acyclic valued quiver. We define a bialgebra structure and an integration map on the Hall algebra associated to the morphism category of projective representations of Q. As an application, we recover the surjective homomorphism defined in [12], which realizes the principal coefficient quantum cluster algebra A(q) (Q) as a sub-quotient of the Hall algebra of morphisms. Moreover, we also recover the quantum Caldero-Chapoton formula, as well as some multiplication formulas between quantum Caldero-Chapoton characters.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] On quantum cluster algebras of finite type
    Ding, Ming
    FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (02) : 231 - 240
  • [42] A Quantum Analog of Generalized Cluster Algebras
    Bai, Liqian
    Chen, Xueqing
    Ding, Ming
    Xu, Fan
    ALGEBRAS AND REPRESENTATION THEORY, 2018, 21 (06) : 1203 - 1217
  • [43] A Quantum Analog of Generalized Cluster Algebras
    Liqian Bai
    Xueqing Chen
    Ming Ding
    Fan Xu
    Algebras and Representation Theory, 2018, 21 : 1203 - 1217
  • [44] Quantum Cluster Algebras and Fusion Products
    Di Francesco, Philippe
    Kedem, Rinat
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (10) : 2593 - 2642
  • [45] On quantum cluster algebras of finite type
    Ming Ding
    Frontiers of Mathematics in China, 2011, 6 : 231 - 240
  • [46] Tetrahedron equation and quantum cluster algebras
    Inoue, Rei
    Kuniba, Atsuo
    Terashima, Yuji
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (08)
  • [47] Triangular Bases in Quantum Cluster Algebras
    Berenstein, Arkady
    Zelevinsky, Andrei
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (06) : 1651 - 1688
  • [48] Semiheaps and Ternary Algebras in Quantum Mechanics Revisited
    Bruce, Andrew James
    UNIVERSE, 2022, 8 (01)
  • [49] QUANTUM FRIEZE PATTERNS IN QUANTUM CLUSTER ALGEBRAS OF TYPE A
    Burelle, Jean-Philippe
    Dupont, Gregoire
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2012, 12 : 103 - 115
  • [50] Graded quantum cluster algebras and an application to quantum Grassmannians
    Grabowski, Jan E.
    Launois, Stephane
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 109 : 697 - 732