Quantum cluster characters of Hall algebras revisited

被引:1
|
作者
Fu, Changjian [1 ]
Peng, Liangang [1 ]
Zhang, Haicheng [2 ]
机构
[1] SiChuan Univ, Dept Math, Chengdu 610064, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
来源
SELECTA MATHEMATICA-NEW SERIES | 2023年 / 29卷 / 01期
基金
中国国家自然科学基金;
关键词
Hall algebra of morphisms; Comultiplication; Integration map; Quantum cluster algebra; TRIANGULATED CATEGORIES; LIE-ALGEBRAS; ANALOG;
D O I
10.1007/s00029-022-00811-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Q be a finite acyclic valued quiver. We define a bialgebra structure and an integration map on the Hall algebra associated to the morphism category of projective representations of Q. As an application, we recover the surjective homomorphism defined in [12], which realizes the principal coefficient quantum cluster algebra A(q) (Q) as a sub-quotient of the Hall algebra of morphisms. Moreover, we also recover the quantum Caldero-Chapoton formula, as well as some multiplication formulas between quantum Caldero-Chapoton characters.
引用
收藏
页数:29
相关论文
共 50 条
  • [31] Connected quantized Weyl algebras and quantum cluster algebras
    Fish, Christopher D.
    Jordan, David A.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (08) : 2374 - 2412
  • [32] The Cluster Multiplication Theorem for Acyclic Quantum Cluster Algebras
    Chen, Xueqing
    Ding, Ming
    Zhang, Haicheng
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (23) : 20533 - 20573
  • [33] Quantum Grothendieck rings and derived Hall algebras
    Hernandez, David
    Leclerc, Bernard
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 701 : 77 - 126
  • [34] Quantum groups via Hall algebras of complexes
    Bridgeland, Tom
    ANNALS OF MATHEMATICS, 2013, 177 (02) : 739 - 759
  • [35] Exceptional sequences in Hall algebras and quantum groups
    Chen, XQ
    Xiao, J
    COMPOSITIO MATHEMATICA, 1999, 117 (02) : 161 - 187
  • [36] Cohomological Hall algebras and affine quantum groups
    Yaping Yang
    Gufang Zhao
    Selecta Mathematica, 2018, 24 : 1093 - 1119
  • [37] Cohomological Hall algebras and affine quantum groups
    Yang, Yaping
    Zhao, Gufang
    SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (02): : 1093 - 1119
  • [38] Realization of ıquantum groups via Δ-Hall algebras
    Chen, Jiayi
    Lin, Yanan
    Ruan, Shiquan
    JOURNAL OF ALGEBRA, 2024, 653 : 378 - 403
  • [39] Quantum groups, Hall algebras and quantized shuffles
    Green, JA
    FINITE REDUCTIVE GROUPS: RELATED STRUCTURES AND REPRESENTATIONS: PROCEEDINGS OF AN INTERNATIONAL CONFERENCE HELD IN LUMINY, FRANCE, 1997, 141 : 273 - 290
  • [40] QUANTUM DIFFUSIONS ON THE ROTATION ALGEBRAS AND THE QUANTUM HALL-EFFECT
    ROBINSON, P
    LECTURE NOTES IN MATHEMATICS, 1990, 1442 : 326 - 333