Quantum cluster characters of Hall algebras revisited

被引:1
|
作者
Fu, Changjian [1 ]
Peng, Liangang [1 ]
Zhang, Haicheng [2 ]
机构
[1] SiChuan Univ, Dept Math, Chengdu 610064, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
来源
SELECTA MATHEMATICA-NEW SERIES | 2023年 / 29卷 / 01期
基金
中国国家自然科学基金;
关键词
Hall algebra of morphisms; Comultiplication; Integration map; Quantum cluster algebra; TRIANGULATED CATEGORIES; LIE-ALGEBRAS; ANALOG;
D O I
10.1007/s00029-022-00811-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Q be a finite acyclic valued quiver. We define a bialgebra structure and an integration map on the Hall algebra associated to the morphism category of projective representations of Q. As an application, we recover the surjective homomorphism defined in [12], which realizes the principal coefficient quantum cluster algebra A(q) (Q) as a sub-quotient of the Hall algebra of morphisms. Moreover, we also recover the quantum Caldero-Chapoton formula, as well as some multiplication formulas between quantum Caldero-Chapoton characters.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Positivity for quantum cluster algebras
    Davison, Ben
    ANNALS OF MATHEMATICS, 2018, 187 (01) : 157 - 219
  • [22] Fractional quantum Hall effect revisited
    Jacak, J.
    Lydzba, P.
    Jacak, L.
    PHYSICA B-CONDENSED MATTER, 2015, 475 : 122 - 139
  • [23] Hall-Littlewood polynomials and characters of affine Lie algebras
    Bartlett, Nick
    Warnaar, S. Ole
    ADVANCES IN MATHEMATICS, 2015, 285 : 1066 - 1105
  • [25] Characters of Fundamental Representations of Quantum Affine Algebras
    Vyjayanthi Chari
    Adriano A. Moura
    Acta Applicandae Mathematica, 2006, 90 : 43 - 63
  • [26] Characters of fundamental representations of quantum affine algebras
    Chari, Vyjayanthi
    Moura, Adriano A.
    ACTA APPLICANDAE MATHEMATICAE, 2006, 90 (1-2) : 43 - 63
  • [27] Quantum Grothendieck rings as quantum cluster algebras
    Bittmann, Lea
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 103 (01): : 161 - 197
  • [28] Quantum Q systems: from cluster algebras to quantum current algebras
    Philippe Di Francesco
    Rinat Kedem
    Letters in Mathematical Physics, 2017, 107 : 301 - 341
  • [29] Quantum Q systems: from cluster algebras to quantum current algebras
    Di Francesco, Philippe
    Kedem, Rinat
    LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (02) : 301 - 341
  • [30] Quantum loop algebras, quiver varieties, and cluster algebras
    Leclerc, Bernard
    REPRESENTATIONS OF ALGEBRAS AND RELATED TOPICS, 2011, : 117 - 152