A Quantum Analog of Generalized Cluster Algebras

被引:3
|
作者
Bai, Liqian [1 ]
Chen, Xueqing [2 ]
Ding, Ming [3 ,4 ]
Xu, Fan [5 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710072, Shaanxi, Peoples R China
[2] Univ Wisconsin, Dept Math, 800 W Main St, Whitewater, WI 53190 USA
[3] Nankai Univ, Sch Math Sci, Tianjin, Peoples R China
[4] Nankai Univ, LPMC, Tianjin, Peoples R China
[5] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Generalized cluster algebra; Generalized quantum cluster algebra; Laurent phenomenon; Standard monomial; DILOGARITHM;
D O I
10.1007/s10468-017-9743-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a quantum analog of a class of generalized cluster algebras which can be viewed as a generalization of quantum cluster algebras defined in Berenstein and Zelevinsky (Adv. Math. 195(2), 405-455 2005). In the case of rank two, we extend some structural results from the classical theory of generalized cluster algebras obtained in Chekhov and Shapiro (Int. Math. Res. Notices 10, 2746-2772 2014) and Rupel (2013) to the quantum case.
引用
收藏
页码:1203 / 1217
页数:15
相关论文
共 50 条
  • [1] A Quantum Analog of Generalized Cluster Algebras
    Liqian Bai
    Xueqing Chen
    Ming Ding
    Fan Xu
    Algebras and Representation Theory, 2018, 21 : 1203 - 1217
  • [2] Quantum generalized cluster algebras and quantum dilogarithms of higher degrees
    Nakanishi, T.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 185 (03) : 1759 - 1768
  • [3] Quantum generalized cluster algebras and quantum dilogarithms of higher degrees
    T. Nakanishi
    Theoretical and Mathematical Physics, 2015, 185 : 1759 - 1768
  • [4] An Analog of Leclerc's Conjecture for Bases of Quantum Cluster Algebras
    Qin, Fan
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [5] Generalized quantum cluster algebras: The Laurent phenomenon and upper bounds
    Bai, Liqian
    Chen, Xueqing
    Ding, Ming
    Xu, Fan
    JOURNAL OF ALGEBRA, 2023, 619 : 298 - 322
  • [6] Quantum cluster algebras and quantum nilpotent algebras
    Goodearl, Kenneth R.
    Yakimov, Milen T.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (27) : 9696 - 9703
  • [7] Quantum cluster algebras
    Berenstein, A
    Zelevinsky, A
    ADVANCES IN MATHEMATICS, 2005, 195 (02) : 405 - 455
  • [8] CLUSTER ALGEBRAS AND QUANTUM AFFINE ALGEBRAS
    Hernandez, David
    Leclerc, Bernard
    DUKE MATHEMATICAL JOURNAL, 2010, 154 (02) : 265 - 341
  • [9] On F-Polynomials for Generalized Quantum Cluster Algebras and Gupta's Formula
    Fu, Changjian
    Peng, Liangang
    Ye, Huihui
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2024, 20
  • [10] Quantum cluster algebras and their specializations
    Gei, Christof
    Leclerc, Bernard
    Schroer, Jan
    JOURNAL OF ALGEBRA, 2020, 558 : 411 - 422