A Quantum Analog of Generalized Cluster Algebras

被引:3
|
作者
Bai, Liqian [1 ]
Chen, Xueqing [2 ]
Ding, Ming [3 ,4 ]
Xu, Fan [5 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710072, Shaanxi, Peoples R China
[2] Univ Wisconsin, Dept Math, 800 W Main St, Whitewater, WI 53190 USA
[3] Nankai Univ, Sch Math Sci, Tianjin, Peoples R China
[4] Nankai Univ, LPMC, Tianjin, Peoples R China
[5] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Generalized cluster algebra; Generalized quantum cluster algebra; Laurent phenomenon; Standard monomial; DILOGARITHM;
D O I
10.1007/s10468-017-9743-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a quantum analog of a class of generalized cluster algebras which can be viewed as a generalization of quantum cluster algebras defined in Berenstein and Zelevinsky (Adv. Math. 195(2), 405-455 2005). In the case of rank two, we extend some structural results from the classical theory of generalized cluster algebras obtained in Chekhov and Shapiro (Int. Math. Res. Notices 10, 2746-2772 2014) and Rupel (2013) to the quantum case.
引用
收藏
页码:1203 / 1217
页数:15
相关论文
共 50 条
  • [41] PRESENTATION OF QUANTUM GENERALIZED SCHUR ALGEBRAS
    Li, Libin
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2005, 4 (05) : 567 - 575
  • [42] Endomorphisms of Quantum Generalized Weyl Algebras
    Andrew P. Kitchin
    Stéphane Launois
    Letters in Mathematical Physics, 2014, 104 : 837 - 848
  • [43] Acyclic quantum cluster algebras via Hall algebras of morphisms
    Ming Ding
    Fan Xu
    Haicheng Zhang
    Mathematische Zeitschrift, 2020, 296 : 945 - 968
  • [44] Acyclic quantum cluster algebras via Hall algebras of morphisms
    Ding, Ming
    Xu, Fan
    Zhang, Haicheng
    MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (3-4) : 945 - 968
  • [45] Cluster Scattering Diagrams and Theta Functions for Reciprocal Generalized Cluster Algebras
    Cheung, Man-Wai
    Kelley, Elizabeth
    Musiker, Gregg
    ANNALS OF COMBINATORICS, 2022, 27 (3) : 615 - 691
  • [46] Exact WKB Analysis and Cluster Algebras II: Simple Poles, Orbifold Points, and Generalized Cluster Algebras
    Iwaki, Kohei
    Nakanishi, Tomoki
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (14) : 4375 - 4417
  • [47] Double-partition quantum cluster algebras
    Jakobsen, Hans Plesner
    Zhang, Hechun
    JOURNAL OF ALGEBRA, 2012, 372 : 172 - 203
  • [48] Quantum cluster characters of Hall algebras revisited
    Changjian Fu
    Liangang Peng
    Haicheng Zhang
    Selecta Mathematica, 2023, 29
  • [49] Strong positivity for quantum theta bases of quantum cluster algebras
    Ben Davison
    Travis Mandel
    Inventiones mathematicae, 2021, 226 : 725 - 843
  • [50] Quantum cluster characters of Hall algebras revisited
    Fu, Changjian
    Peng, Liangang
    Zhang, Haicheng
    SELECTA MATHEMATICA-NEW SERIES, 2023, 29 (01):