A Quantum Analog of Generalized Cluster Algebras

被引:3
|
作者
Bai, Liqian [1 ]
Chen, Xueqing [2 ]
Ding, Ming [3 ,4 ]
Xu, Fan [5 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710072, Shaanxi, Peoples R China
[2] Univ Wisconsin, Dept Math, 800 W Main St, Whitewater, WI 53190 USA
[3] Nankai Univ, Sch Math Sci, Tianjin, Peoples R China
[4] Nankai Univ, LPMC, Tianjin, Peoples R China
[5] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Generalized cluster algebra; Generalized quantum cluster algebra; Laurent phenomenon; Standard monomial; DILOGARITHM;
D O I
10.1007/s10468-017-9743-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a quantum analog of a class of generalized cluster algebras which can be viewed as a generalization of quantum cluster algebras defined in Berenstein and Zelevinsky (Adv. Math. 195(2), 405-455 2005). In the case of rank two, we extend some structural results from the classical theory of generalized cluster algebras obtained in Chekhov and Shapiro (Int. Math. Res. Notices 10, 2746-2772 2014) and Rupel (2013) to the quantum case.
引用
收藏
页码:1203 / 1217
页数:15
相关论文
共 50 条
  • [31] Triangular Bases in Quantum Cluster Algebras
    Berenstein, Arkady
    Zelevinsky, Andrei
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (06) : 1651 - 1688
  • [32] On some combinatorial properties of generalized cluster algebras
    Cao, Peigen
    Li, Fang
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (08)
  • [33] Generalized HL-modules and cluster algebras
    Guo, Jingmin
    Duan, Bing
    Luo, Yanfeng
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025,
  • [34] Generalized reductive algebras and a quantum example
    Farkas, DR
    Letzter, G
    Small, LW
    PACIFIC JOURNAL OF MATHEMATICS, 2005, 221 (01) : 29 - 48
  • [35] On quantum mechanics and generalized Clifford algebras
    A. K. Kwaśniewski
    W. Bajguz
    I. Jaroszewski
    Advances in Applied Clifford Algebras, 1998, 8 (2) : 417 - 432
  • [36] Endomorphisms of Quantum Generalized Weyl Algebras
    Kitchin, Andrew P.
    Launois, Stephane
    LETTERS IN MATHEMATICAL PHYSICS, 2014, 104 (07) : 837 - 848
  • [37] QUANTUM FRIEZE PATTERNS IN QUANTUM CLUSTER ALGEBRAS OF TYPE A
    Burelle, Jean-Philippe
    Dupont, Gregoire
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2012, 12 : 103 - 115
  • [38] Graded quantum cluster algebras and an application to quantum Grassmannians
    Grabowski, Jan E.
    Launois, Stephane
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 109 : 697 - 732
  • [39] Quantum generalized Heisenberg algebras and their representations
    Lopes, Samuel A.
    Razavinia, Farrokh
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (02) : 463 - 483
  • [40] Quantum Cluster Algebra Structures on Quantum Nilpotent Algebras
    Goodearl, K. R.
    Yakimov, M. T.
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 247 (1169) : 1 - +