Optimizing Surface Passivation of n-Type Quantum Dots for Efficient PbS Quantum Dot Solar Cells

被引:4
|
作者
Huang, Tengzuo [1 ,2 ,3 ,4 ]
Wu, Chunyan [2 ,3 ,4 ]
Chen, Zuyan [2 ,3 ,4 ]
Shen, Shuang [2 ,3 ,4 ]
Yang, Jinpeng [1 ]
Xu, Wei [2 ,3 ]
Kang, Kai [2 ,3 ,4 ]
Sun, Tao [1 ]
Xiang, Chaoyu [2 ,3 ,4 ]
机构
[1] Yunnan Univ, Energy Res Inst, Int Joint Res Ctr China Optoelect & Energy Mat, Kunming 650091, Yunnan, Peoples R China
[2] CNITECH, Lab Adv Nanooptoelect Mat & Devices, Qianwan Inst, Ningbo 315336, Zhejiang, Peoples R China
[3] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Lab Adv Nanooptoelect Mat & Devices, Ningbo 315201, Zhejiang, Peoples R China
[4] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Zhejiang Prov Engn Res Ctr Energy Optoelect Mat &, Ningbo 315201, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
active layer; concentration adjustment; liquid-phase ligand exchange; PbS QD solar cell; photovoltaic performance; LIGAND-EXCHANGE; INKS; RECOMBINATION; DYNAMICS;
D O I
10.1002/solr.202400073
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The n-type quantum dot (QD) active layer is the core component of lead sulfide QD solar cells (PbS QDSCs). In the state-of-the-art PbS QDSCs, the active layer is commonly obtained through liquid-phase ligand exchange (LPLE). Due to the intricate chemical state of the ligand exchange solution providing halide ligand, therefore, the PbS-OAQD solutions is used at concentrations of 20, 30, and 40 mg mL-1 for LPLE, aiming to investigate the reasons for different surface states post-exchange and their impact on device performance. The results indicate that when the concentration of the PbS-OA QD solution is 30 mg mL-1, the exchanged QDs exhibit complete removal of surface OA, a higher content of short-chain ligand PbX2 (X = I, Br), Consequently, devices fabricated using PbS-PbX2 QD obtained through the exchange of 30 mg mL-1 PbS-OA QD solution achieve a higher power conversion efficiency (PCE) of 12.53%. This study presents a simple and effective strategy to enhance the performance of PbS QDSCs. This study reveals the differences in the surface states of PbS-PbX2 quantum dots obtained through liquid-phase ligand exchange using PbS-OA solutions of different concentrations. It explores the reasons for the formation of these surface states and investigates the impact of different surface states on the photovoltaic parameters of the devices.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Enhancing Electron and Hole Extractions for Efficient PbS Quantum Dot Solar Cells
    Ren, Zhenwei
    Kuang, Zhuoran
    Zhang, Linlin
    Sun, Jiankun
    Yi, Xiaohui
    Pan, Zhenxiao
    Zhong, Xinhua
    Hu, Jinsong
    Xia, Andong
    Wang, Jizheng
    SOLAR RRL, 2017, 1 (12):
  • [32] In-situ surface patch-passivation via phosphorus oxygen bond for efficient PbS colloidal quantum dot infrared solar cells
    Xiao, Qi
    Xia, Bing
    Liu, Peilin
    Yang, Yang
    Yang, Gaoyuan
    Liu, Jing
    Lu, Shuaicheng
    Zhao, Xuezhi
    Ge, Ciyu
    Chen, Duo
    Yang, Junrui
    Liang, Guijie
    Li, Kanghua
    Lan, Xinzheng
    Xiao, Zewen
    Zhang, Jianbing
    Gao, Liang
    Tang, Jiang
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 248
  • [33] Interfacial Heterojunction Enables High Efficient PbS Quantum Dot Solar Cells
    Zhang, Li
    Chen, Yong
    Cao, Shuang
    Yuan, Defei
    Tang, Xu
    Wang, Dengke
    Gao, Yajun
    Zhang, Junjie
    Zhao, Yongbiao
    Yang, Xichuan
    Lu, Zhenghong
    Fan, Quli
    Sun, Bin
    ADVANCED SCIENCE, 2024, 11 (26)
  • [34] Enhanced performance of quantum dot solar cells based on type II quantum dots
    Xu, Feng
    Yang, Xiao-Guang
    Luo, Shuai
    Lv, Zun-Ren
    Yang, Tao
    JOURNAL OF APPLIED PHYSICS, 2014, 116 (13)
  • [35] Efficient inorganic solid solar cells composed of perovskite and PbS quantum dots
    Li, Yi
    Zhu, Jun
    Huang, Yang
    Wei, Junfeng
    Liu, Feng
    Shao, Zhipeng
    Hu, Linhua
    Chen, Shuanghong
    Yang, Shangfeng
    Tang, Junwang
    Yao, Jianxi
    Dai, Songyuan
    NANOSCALE, 2015, 7 (21) : 9902 - 9907
  • [36] PbS/CdS heterojunction quantum dot solar cells
    Dagher, Sawsan
    Haik, Yousef
    Tit, Nacir
    Ayesh, Ahmad
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2016, 27 (04) : 3328 - 3340
  • [37] PbS/CdS heterojunction quantum dot solar cells
    Sawsan Dagher
    Yousef Haik
    Nacir Tit
    Ahmad Ayesh
    Journal of Materials Science: Materials in Electronics, 2016, 27 : 3328 - 3340
  • [38] PbS Quantum Dot Solar Cells Integrated with Sol-Gel-Derived ZnO as an n-Type Charge-Selective Layer
    Park, Hye-Yun
    Ryu, Ilhwan
    Kim, Jinhyun
    Jeong, Sohee
    Yim, Sanggyu
    Jang, Sung-Yeon
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (31): : 17374 - 17382
  • [39] n-Type silicon quantum dots and p-type crystalline silicon heteroface solar cells
    Park, Sangwook
    Cho, Eunchel
    Song, Dengyuan
    Conibeer, Gavin
    Green, Martin A.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (6-7) : 684 - 690
  • [40] Dual ligand passivation on improving photovoltaic performance for carbon based PbS quantum dot solar cells
    Liao, Kai
    Zhu, Yuxiang
    Gu, Yongjie
    Zhang, Xinlong
    Zhang, Yuanfang
    Li, Wei
    Huang, Jincheng
    Peng, Zhuoyin
    JOURNAL OF SOLID STATE CHEMISTRY, 2025, 345