Optimizing Surface Passivation of n-Type Quantum Dots for Efficient PbS Quantum Dot Solar Cells

被引:4
|
作者
Huang, Tengzuo [1 ,2 ,3 ,4 ]
Wu, Chunyan [2 ,3 ,4 ]
Chen, Zuyan [2 ,3 ,4 ]
Shen, Shuang [2 ,3 ,4 ]
Yang, Jinpeng [1 ]
Xu, Wei [2 ,3 ]
Kang, Kai [2 ,3 ,4 ]
Sun, Tao [1 ]
Xiang, Chaoyu [2 ,3 ,4 ]
机构
[1] Yunnan Univ, Energy Res Inst, Int Joint Res Ctr China Optoelect & Energy Mat, Kunming 650091, Yunnan, Peoples R China
[2] CNITECH, Lab Adv Nanooptoelect Mat & Devices, Qianwan Inst, Ningbo 315336, Zhejiang, Peoples R China
[3] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Lab Adv Nanooptoelect Mat & Devices, Ningbo 315201, Zhejiang, Peoples R China
[4] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Zhejiang Prov Engn Res Ctr Energy Optoelect Mat &, Ningbo 315201, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
active layer; concentration adjustment; liquid-phase ligand exchange; PbS QD solar cell; photovoltaic performance; LIGAND-EXCHANGE; INKS; RECOMBINATION; DYNAMICS;
D O I
10.1002/solr.202400073
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The n-type quantum dot (QD) active layer is the core component of lead sulfide QD solar cells (PbS QDSCs). In the state-of-the-art PbS QDSCs, the active layer is commonly obtained through liquid-phase ligand exchange (LPLE). Due to the intricate chemical state of the ligand exchange solution providing halide ligand, therefore, the PbS-OAQD solutions is used at concentrations of 20, 30, and 40 mg mL-1 for LPLE, aiming to investigate the reasons for different surface states post-exchange and their impact on device performance. The results indicate that when the concentration of the PbS-OA QD solution is 30 mg mL-1, the exchanged QDs exhibit complete removal of surface OA, a higher content of short-chain ligand PbX2 (X = I, Br), Consequently, devices fabricated using PbS-PbX2 QD obtained through the exchange of 30 mg mL-1 PbS-OA QD solution achieve a higher power conversion efficiency (PCE) of 12.53%. This study presents a simple and effective strategy to enhance the performance of PbS QDSCs. This study reveals the differences in the surface states of PbS-PbX2 quantum dots obtained through liquid-phase ligand exchange using PbS-OA solutions of different concentrations. It explores the reasons for the formation of these surface states and investigates the impact of different surface states on the photovoltaic parameters of the devices.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Quantum-Dot-Sensitized Solar Cells with Water-Soluble and Air-Stable PbS Quantum Dots
    Jumabekov, Askhat N.
    Deschler, Felix
    Boehm, Daniel
    Peter, Laurence M.
    Feldmann, Jochen
    Bein, Thomas
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (10): : 5142 - 5149
  • [42] Perovskite bridging PbS quantum dot/polymer interface enables efficient solar cells
    Meng, Xing
    Chen, Yifan
    Yang, Fan
    Zhang, Jieqi
    Shi, Guozheng
    Zhang, Yannan
    Tang, Haodong
    Chen, Wei
    Liu, Yang
    Yuan, Lin
    Li, Shaojuan
    Wang, Kai
    Chen, Qi
    Liu, Zeke
    Ma, Wanli
    NANO RESEARCH, 2022, 15 (07) : 6121 - 6127
  • [43] Supercritical synthesis and in situ deposition of PbS nanocrystals with oleic acid passivation for quantum dot solar cells
    Tavakoli, M. M.
    Simchi, A.
    Aashuri, H.
    MATERIALS CHEMISTRY AND PHYSICS, 2015, 156 : 163 - 169
  • [44] Perovskite bridging PbS quantum dot/polymer interface enables efficient solar cells
    Xing Meng
    Yifan Chen
    Fan Yang
    Jieqi Zhang
    Guozheng Shi
    Yannan Zhang
    Haodong Tang
    Wei Chen
    Yang Liu
    Lin Yuan
    Shaojuan Li
    Kai Wang
    Qi Chen
    Zeke Liu
    Wanli Ma
    Nano Research, 2022, 15 : 6121 - 6127
  • [45] Rational design of surface passivation for highly efficient quantum dot sensitized solar cell
    Shi, Yanli
    Zhou, Xiaowen
    Lin, Yuan
    Jia, Jianguang
    OPTICAL MATERIALS, 2023, 145
  • [46] PbS and PbSe quantum dot solar cells: Ion exchange synthesis and metal halide surface passivation for high efficiency devices
    Crisp, Ryan
    Zhang, Jianbing
    Gao, Jianbo
    Marshall, Ashley
    Kroupa, Daniel
    Miller, Elisa
    Beard, Matthew
    Luther, Joseph
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [47] Surface Passivation of Boron Emitters on n-Type Silicon Solar Cells
    Hyun, Ji Yeon
    Bae, Soohyun
    Nam, Yoon Chung
    Kang, Dongkyun
    Lee, Sang-Won
    Kim, Donghwan
    Park, Ooyoung
    Kang, Yoonmook
    Lee, Hae-Seok
    SUSTAINABILITY, 2019, 11 (14)
  • [48] Magnetoresistance of n-type quantum dot solids
    Yu, D
    Wehrenberg, BL
    Yang, I
    Kang, WW
    Guyot-Sionnest, P
    APPLIED PHYSICS LETTERS, 2006, 88 (07)
  • [49] Performance optimization of efficient PbS quantum dots solar cells through numerical simulation
    Sandeep Kumar
    Pragya Bharti
    Basudev Pradhan
    Scientific Reports, 13
  • [50] Efficient PbS quantum dots tandem solar cells through compatible interconnection layer
    Gomaa Mohamed Gomaa Khalaf
    Xinzhao Zhao
    Mingyu Li
    Chunxia Li
    Salman Ali
    Tianjun Ma
    HsienYi Hsu
    Jianbin Zhang
    Haisheng Song
    Journal of Energy Chemistry, 2024, 98 (11) : 47 - 57