Optimizing Surface Passivation of n-Type Quantum Dots for Efficient PbS Quantum Dot Solar Cells

被引:4
|
作者
Huang, Tengzuo [1 ,2 ,3 ,4 ]
Wu, Chunyan [2 ,3 ,4 ]
Chen, Zuyan [2 ,3 ,4 ]
Shen, Shuang [2 ,3 ,4 ]
Yang, Jinpeng [1 ]
Xu, Wei [2 ,3 ]
Kang, Kai [2 ,3 ,4 ]
Sun, Tao [1 ]
Xiang, Chaoyu [2 ,3 ,4 ]
机构
[1] Yunnan Univ, Energy Res Inst, Int Joint Res Ctr China Optoelect & Energy Mat, Kunming 650091, Yunnan, Peoples R China
[2] CNITECH, Lab Adv Nanooptoelect Mat & Devices, Qianwan Inst, Ningbo 315336, Zhejiang, Peoples R China
[3] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Lab Adv Nanooptoelect Mat & Devices, Ningbo 315201, Zhejiang, Peoples R China
[4] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Zhejiang Prov Engn Res Ctr Energy Optoelect Mat &, Ningbo 315201, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
active layer; concentration adjustment; liquid-phase ligand exchange; PbS QD solar cell; photovoltaic performance; LIGAND-EXCHANGE; INKS; RECOMBINATION; DYNAMICS;
D O I
10.1002/solr.202400073
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The n-type quantum dot (QD) active layer is the core component of lead sulfide QD solar cells (PbS QDSCs). In the state-of-the-art PbS QDSCs, the active layer is commonly obtained through liquid-phase ligand exchange (LPLE). Due to the intricate chemical state of the ligand exchange solution providing halide ligand, therefore, the PbS-OAQD solutions is used at concentrations of 20, 30, and 40 mg mL-1 for LPLE, aiming to investigate the reasons for different surface states post-exchange and their impact on device performance. The results indicate that when the concentration of the PbS-OA QD solution is 30 mg mL-1, the exchanged QDs exhibit complete removal of surface OA, a higher content of short-chain ligand PbX2 (X = I, Br), Consequently, devices fabricated using PbS-PbX2 QD obtained through the exchange of 30 mg mL-1 PbS-OA QD solution achieve a higher power conversion efficiency (PCE) of 12.53%. This study presents a simple and effective strategy to enhance the performance of PbS QDSCs. This study reveals the differences in the surface states of PbS-PbX2 quantum dots obtained through liquid-phase ligand exchange using PbS-OA solutions of different concentrations. It explores the reasons for the formation of these surface states and investigates the impact of different surface states on the photovoltaic parameters of the devices.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Probing and Controlling Surface Passivation of PbS Quantum Dot Solid for Improved Performance of Infrared Absorbing Solar Cells
    Zhang, Xiaoliang
    Cappel, Ute B.
    Jia, Donglin
    Zhou, Qisen
    Du, Juan
    Sloboda, Tamara
    Svanstrom, Sebastian
    Johansson, Fredrik O. L.
    Lindblad, Andreas
    Giangrisostomi, Erika
    Ovsyannikov, Ruslan
    Liu, Jianhua
    Rensmo, Hakan
    Gardner, James M.
    Johansson, Erik M. J.
    CHEMISTRY OF MATERIALS, 2019, 31 (11) : 4081 - 4091
  • [22] PbS Colloidal Quantum Dots Infrared Solar Cells: Defect Information and Passivation Strategies
    Khalaf, Gomaa Mohamed Gomaa
    Li, Mingyu
    Yan, Jun
    Zhao, Xinzhao
    Ma, Tianjun
    Hsu, Hsien-Yi
    Song, Haisheng
    SMALL SCIENCE, 2023, 3 (11):
  • [23] Ambient Stable and Efficient Monolithic Tandem Perovskite/PbS Quantum Dots Solar Cells via Surface Passivation and Light Management Strategies
    Tavakoli, Mohammad Mahdi
    Dastjerdi, Hadi Tavakoli
    Yadav, Pankaj
    Prochowicz, Daniel
    Si, Huayan
    Tavakoli, Rouhollah
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (21)
  • [24] PbS quantum dots as additives in methylammonium halide perovskite solar cells: the effect of quantum dot capping
    Thi Tuyen Ngo
    Masi, Sofia
    Mendez, Perla F.
    Kazes, Miri
    Oron, Dan
    Mora Sero, Ivan
    NANOSCALE ADVANCES, 2019, 1 (10): : 4109 - 4118
  • [25] Multidentate passivation crosslinking perovskite quantum dots for efficient solar cells
    Chen, Jingxuan
    Jia, Donglin
    Qiu, Junming
    Zhuang, Rongshan
    Hua, Yong
    Zhang, Xiaoliang
    NANO ENERGY, 2022, 96
  • [26] Hybridization of an n-type semiconducting polymer with PbS quantum dots and their photovoltaic investigation
    Yoshida, Keita
    Chang, Jia-Fu
    Chueh, Chu-Chen
    Higashihara, Tomoya
    POLYMER JOURNAL, 2022, 54 (03) : 323 - 333
  • [27] Hybridization of an n-type semiconducting polymer with PbS quantum dots and their photovoltaic investigation
    Keita Yoshida
    Jia-Fu Chang
    Chu-Chen Chueh
    Tomoya Higashihara
    Polymer Journal, 2022, 54 : 323 - 333
  • [28] Improving the Performance of PbS Quantum Dot Solar Cells by Optimizing ZnO Window Layer
    Xiaokun Yang
    Long Hu
    Hui Deng
    Keke Qiao
    Chao Hu
    Zhiyong Liu
    Shengjie Yuan
    Jahangeer Khan
    Dengbing Li
    Jiang Tang
    Haisheng Song
    Chun Cheng
    Nano-Micro Letters, 2017, 9 (02) : 156 - 165
  • [29] Improving the Performance of PbS Quantum Dot Solar Cells by Optimizing ZnO Window Layer
    Xiaokun Yang
    Long Hu
    Hui Deng
    Keke Qiao
    Chao Hu
    Zhiyong Liu
    Shengjie Yuan
    Jahangeer Khan
    Dengbing Li
    Jiang Tang
    Haisheng Song
    Chun Cheng
    Nano-Micro Letters, 2017, 9
  • [30] Improving the Performance of PbS Quantum Dot Solar Cells by Optimizing ZnO Window Layer
    Yang, Xiaokun
    Hu, Long
    Deng, Hui
    Qiao, Keke
    Hu, Chao
    Liu, Zhiyong
    Yuan, Shengjie
    Khan, Jahangeer
    Li, Dengbing
    Tang, Jiang
    Song, Haisheng
    Cheng, Chun
    NANO-MICRO LETTERS, 2017, 9 (02)