In-situ surface patch-passivation via phosphorus oxygen bond for efficient PbS colloidal quantum dot infrared solar cells

被引:4
|
作者
Xiao, Qi [1 ,2 ,3 ]
Xia, Bing [1 ,2 ]
Liu, Peilin [1 ,2 ]
Yang, Yang [1 ,2 ]
Yang, Gaoyuan [4 ]
Liu, Jing [1 ,2 ]
Lu, Shuaicheng [1 ,2 ,3 ,5 ]
Zhao, Xuezhi [1 ,2 ]
Ge, Ciyu [1 ,2 ]
Chen, Duo [1 ,2 ]
Yang, Junrui [1 ,2 ]
Liang, Guijie [4 ]
Li, Kanghua [1 ,2 ]
Lan, Xinzheng [1 ,2 ,3 ]
Xiao, Zewen [1 ,2 ,3 ]
Zhang, Jianbing [1 ,2 ,3 ,5 ]
Gao, Liang [1 ,2 ,3 ,5 ]
Tang, Jiang [1 ,2 ,3 ]
机构
[1] Wuhan Natl Lab Optoelect WNLO, Sch Opt & Elect Informat, Wuhan, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, 1037 Luoyu Rd, Wuhan, Peoples R China
[3] Opt Valley Lab, Wuhan 430074, Peoples R China
[4] Hubei Univ Arts & Sci, Hubei Key Lab Low Dimens Optoelect Mat & Devices, Xiangyang, Peoples R China
[5] Huazhong Univ Sci & Technol, Wenzhou Adv Mfg Technol Res Inst, 225 Chaoyang New St, Wenzhou, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Colloidal quantum dot; Triphenylphosphine oxide; Patch-ligand; Defect state;
D O I
10.1016/j.solmat.2022.112040
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
PbS colloidal quantum dots (CQDs) have been widely applied in infrared (IR) solar cells, as they can broaden the photon conversion region beyond 1100 nm, which can help promote an extra 6% of power conversion efficiency (PCE) as bottom subcells for silicon solar cell. Although halide liquid exchange is the dominant passivation strategy for CQDs, it is difficult to passivate all the surface defects, especially for IR CQD, which leaves the main limitation for improving PCE. Here, a facile in-situ solution-processed patch-passivation strategy was first proposed for developing efficient PbS CQD IR solar cells. A typical Lewis base triphenylphosphine oxide (TPPO) was added to I-/Br- capped PbS CQDs, aiming at passivation with uncoordinated Pb2+ as a "patch-ligand". As a result, the phosphorus oxygen bond coordination could help suppress the non-radiative recombination in CQD films. The TPPO-passivated devices delivered an IR PCE as high as 1.36% under silicon-filtered AM 1.5G, along with a promising open-circuit voltage (V-OC) of 0.44 V, both of which are the highest among other single-junction solar cells with a band gap of similar to 0.95 eV. The significant VOC and fill factor (FF) enhancement can be attributed to the decrease in defect density and faster charge transport in TPPO-passivated devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] In Situ Passivation for Efficient PbS Quantum Dot Solar Cells by Precursor Engineering
    Wang, Yongjie
    Lu, Kunyuan
    Han, Lu
    Liu, Zeke
    Shi, Guozheng
    Fang, Honghua
    Chen, Si
    Wu, Tian
    Yang, Fan
    Gu, Mengfan
    Zhou, Sijie
    Ling, Xufeng
    Tang, Xun
    Zheng, Jiawei
    Loi, Maria Antonietta
    Ma, Wanli
    ADVANCED MATERIALS, 2018, 30 (16)
  • [2] Influence of Multistep Surface Passivation on the Performance of PbS Colloidal Quantum Dot Solar Cells
    Clark, Pip C. J.
    Neo, Darren C. J.
    Ahumada-Lazo, Ruben
    Williamson, Andrew, I
    Pis, Igor
    Nappini, Silvia
    Watt, Andrew A. R.
    Flavell, Wendy R.
    LANGMUIR, 2018, 34 (30) : 8887 - 8897
  • [3] The role of surface passivation for efficient and photostable PbS quantum dot solar cells
    Cao, Yiming
    Stavrinadis, Alexandros
    Lasanta, Tania
    So, David
    Konstantatos, Gerasimos
    NATURE ENERGY, 2016, 1
  • [4] The role of surface passivation for efficient and photostable PbS quantum dot solar cells
    Yiming Cao
    Alexandros Stavrinadis
    Tania Lasanta
    David So
    Gerasimos Konstantatos
    Nature Energy, 1 (4)
  • [5] PbS Colloidal Quantum Dot Inks for Infrared Solar Cells
    Zheng, Siyu
    Chen, Jingxuan
    Johansson, Erik M. J.
    Zhang, Xiaoliang
    ISCIENCE, 2020, 23 (11)
  • [6] Organic ligand complementary passivation to Colloidal-quantum-dot surface enables efficient infrared solar cells
    Li, Mingyu
    Zhao, Xinzhao
    Zhang, Afei
    Wang, Bo
    Yang, Yang
    Xu, Shaoheng
    Hu, Qingsong
    Liang, Guijie
    Xiao, Zewen
    Gao, Liang
    Zhang, Jianbing
    Hsu, Hsien-Yi
    Song, Haisheng
    Tang, Jiang
    CHEMICAL ENGINEERING JOURNAL, 2023, 455
  • [7] Optimizing Surface Passivation of n-Type Quantum Dots for Efficient PbS Quantum Dot Solar Cells
    Huang, Tengzuo
    Wu, Chunyan
    Chen, Zuyan
    Shen, Shuang
    Yang, Jinpeng
    Xu, Wei
    Kang, Kai
    Sun, Tao
    Xiang, Chaoyu
    SOLAR RRL, 2024, 8 (09)
  • [8] Influence of Shell Thickness and Surface Passivation on PbS/CdS Core/Shell Colloidal Quantum Dot Solar Cells
    Neo, Darren C. J.
    Cheng, Cheng
    Stranks, Samuel D.
    Fairclough, Simon M.
    Kim, Judy S.
    Kirkland, Angus I.
    Smith, Jason M.
    Snaith, Henry J.
    Assender, Hazel E.
    Watt, Andrew A. R.
    CHEMISTRY OF MATERIALS, 2014, 26 (13) : 4004 - 4013
  • [9] Optimizing Surface Chemistry of PbS Colloidal Quantum Dot for Highly Efficient and Stable Solar Cells via Chemical Binding
    Hu, Long
    Lei, Qi
    Guan, Xinwei
    Patterson, Robert
    Yuan, Jianyu
    Lin, Chun-Ho
    Kim, Jiyun
    Geng, Xun
    Younis, Adnan
    Wu, Xianxin
    Liu, Xinfeng
    Wan, Tao
    Chu, Dewei
    Wu, Tom
    Huang, Shujuan
    ADVANCED SCIENCE, 2021, 8 (02)
  • [10] PbS Colloidal Quantum Dots Infrared Solar Cells: Defect Information and Passivation Strategies
    Khalaf, Gomaa Mohamed Gomaa
    Li, Mingyu
    Yan, Jun
    Zhao, Xinzhao
    Ma, Tianjun
    Hsu, Hsien-Yi
    Song, Haisheng
    SMALL SCIENCE, 2023, 3 (11):