Optimizing Surface Passivation of n-Type Quantum Dots for Efficient PbS Quantum Dot Solar Cells

被引:4
|
作者
Huang, Tengzuo [1 ,2 ,3 ,4 ]
Wu, Chunyan [2 ,3 ,4 ]
Chen, Zuyan [2 ,3 ,4 ]
Shen, Shuang [2 ,3 ,4 ]
Yang, Jinpeng [1 ]
Xu, Wei [2 ,3 ]
Kang, Kai [2 ,3 ,4 ]
Sun, Tao [1 ]
Xiang, Chaoyu [2 ,3 ,4 ]
机构
[1] Yunnan Univ, Energy Res Inst, Int Joint Res Ctr China Optoelect & Energy Mat, Kunming 650091, Yunnan, Peoples R China
[2] CNITECH, Lab Adv Nanooptoelect Mat & Devices, Qianwan Inst, Ningbo 315336, Zhejiang, Peoples R China
[3] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Lab Adv Nanooptoelect Mat & Devices, Ningbo 315201, Zhejiang, Peoples R China
[4] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Zhejiang Prov Engn Res Ctr Energy Optoelect Mat &, Ningbo 315201, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
active layer; concentration adjustment; liquid-phase ligand exchange; PbS QD solar cell; photovoltaic performance; LIGAND-EXCHANGE; INKS; RECOMBINATION; DYNAMICS;
D O I
10.1002/solr.202400073
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The n-type quantum dot (QD) active layer is the core component of lead sulfide QD solar cells (PbS QDSCs). In the state-of-the-art PbS QDSCs, the active layer is commonly obtained through liquid-phase ligand exchange (LPLE). Due to the intricate chemical state of the ligand exchange solution providing halide ligand, therefore, the PbS-OAQD solutions is used at concentrations of 20, 30, and 40 mg mL-1 for LPLE, aiming to investigate the reasons for different surface states post-exchange and their impact on device performance. The results indicate that when the concentration of the PbS-OA QD solution is 30 mg mL-1, the exchanged QDs exhibit complete removal of surface OA, a higher content of short-chain ligand PbX2 (X = I, Br), Consequently, devices fabricated using PbS-PbX2 QD obtained through the exchange of 30 mg mL-1 PbS-OA QD solution achieve a higher power conversion efficiency (PCE) of 12.53%. This study presents a simple and effective strategy to enhance the performance of PbS QDSCs. This study reveals the differences in the surface states of PbS-PbX2 quantum dots obtained through liquid-phase ligand exchange using PbS-OA solutions of different concentrations. It explores the reasons for the formation of these surface states and investigates the impact of different surface states on the photovoltaic parameters of the devices.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:8
相关论文
共 50 条
  • [1] The role of surface passivation for efficient and photostable PbS quantum dot solar cells
    Cao, Yiming
    Stavrinadis, Alexandros
    Lasanta, Tania
    So, David
    Konstantatos, Gerasimos
    NATURE ENERGY, 2016, 1
  • [2] The role of surface passivation for efficient and photostable PbS quantum dot solar cells
    Yiming Cao
    Alexandros Stavrinadis
    Tania Lasanta
    David So
    Gerasimos Konstantatos
    Nature Energy, 1 (4)
  • [3] In Situ Passivation for Efficient PbS Quantum Dot Solar Cells by Precursor Engineering
    Wang, Yongjie
    Lu, Kunyuan
    Han, Lu
    Liu, Zeke
    Shi, Guozheng
    Fang, Honghua
    Chen, Si
    Wu, Tian
    Yang, Fan
    Gu, Mengfan
    Zhou, Sijie
    Ling, Xufeng
    Tang, Xun
    Zheng, Jiawei
    Loi, Maria Antonietta
    Ma, Wanli
    ADVANCED MATERIALS, 2018, 30 (16)
  • [4] Influence of Multistep Surface Passivation on the Performance of PbS Colloidal Quantum Dot Solar Cells
    Clark, Pip C. J.
    Neo, Darren C. J.
    Ahumada-Lazo, Ruben
    Williamson, Andrew, I
    Pis, Igor
    Nappini, Silvia
    Watt, Andrew A. R.
    Flavell, Wendy R.
    LANGMUIR, 2018, 34 (30) : 8887 - 8897
  • [5] Preparation of PbS quantum dots for quantum dot-sensitized solar cells
    Ge Mei-Ying
    Liu Yu-Feng
    Luo Hai-Han
    Huang Chan-Yan
    Sun Yan
    Dai Ning
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2013, 32 (05) : 385 - 388
  • [6] Diffusion-Controlled Synthesis of PbS and PbSe Quantum Dots with in Situ Halide Passivation for Quantum Dot Solar Cells
    Zhang, Jianbing
    Gao, Jianbo
    Miller, Elisa M.
    Luther, Joseph M.
    Beard, Matthew C.
    ACS NANO, 2014, 8 (01) : 614 - 622
  • [7] n-Type Transition Metal Oxide as a Hole Extraction Layer in PbS Quantum Dot Solar Cells
    Gao, Jianbo
    Perkins, Craig L.
    Luther, Joseph M.
    Hanna, Mark C.
    Chen, Hsiang-Yu
    Semonin, Octavi E.
    Nozik, Arthur J.
    Ellingson, Randy J.
    Beard, Matthew C.
    NANO LETTERS, 2011, 11 (08) : 3263 - 3266
  • [8] Reduced Surface Trap States of PbS Quantum Dots by Acetonitrile Treatment for Efficient SnO2-Based PbS Quantum Dot Solar Cells
    Xiao, Guannan
    Liang, Taohua
    Wang, Xiaoming
    Ying, Chao
    Lv, Kai
    Shi, Chengwu
    ACS OMEGA, 2024, 9 (10): : 12211 - 12218
  • [9] Efficient and Stable PbS Quantum Dot Solar Cells by Triple-Cation Perovskite Passivation
    Albaladejo-Siguan, Miguel
    Becker-Koch, David
    Taylor, Alexander D.
    Sun, Qing
    Lami, Vincent
    Oppenheimer, Pola Goldberg
    Paulus, Fabian
    Vaynzof, Yana
    ACS NANO, 2020, 14 (01) : 384 - 393
  • [10] Inorganic iodide surface passivation on PbS quantum dots by one-step process for quantum dots sensitized solar cells
    Huang, Dong
    Peng, Zhuoyin
    Long, Chengtang
    Luo, Wen
    Wang, Yue
    Fu, Yilong
    CHEMICAL PHYSICS LETTERS, 2022, 791