In-situ surface patch-passivation via phosphorus oxygen bond for efficient PbS colloidal quantum dot infrared solar cells

被引:4
|
作者
Xiao, Qi [1 ,2 ,3 ]
Xia, Bing [1 ,2 ]
Liu, Peilin [1 ,2 ]
Yang, Yang [1 ,2 ]
Yang, Gaoyuan [4 ]
Liu, Jing [1 ,2 ]
Lu, Shuaicheng [1 ,2 ,3 ,5 ]
Zhao, Xuezhi [1 ,2 ]
Ge, Ciyu [1 ,2 ]
Chen, Duo [1 ,2 ]
Yang, Junrui [1 ,2 ]
Liang, Guijie [4 ]
Li, Kanghua [1 ,2 ]
Lan, Xinzheng [1 ,2 ,3 ]
Xiao, Zewen [1 ,2 ,3 ]
Zhang, Jianbing [1 ,2 ,3 ,5 ]
Gao, Liang [1 ,2 ,3 ,5 ]
Tang, Jiang [1 ,2 ,3 ]
机构
[1] Wuhan Natl Lab Optoelect WNLO, Sch Opt & Elect Informat, Wuhan, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, 1037 Luoyu Rd, Wuhan, Peoples R China
[3] Opt Valley Lab, Wuhan 430074, Peoples R China
[4] Hubei Univ Arts & Sci, Hubei Key Lab Low Dimens Optoelect Mat & Devices, Xiangyang, Peoples R China
[5] Huazhong Univ Sci & Technol, Wenzhou Adv Mfg Technol Res Inst, 225 Chaoyang New St, Wenzhou, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Colloidal quantum dot; Triphenylphosphine oxide; Patch-ligand; Defect state;
D O I
10.1016/j.solmat.2022.112040
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
PbS colloidal quantum dots (CQDs) have been widely applied in infrared (IR) solar cells, as they can broaden the photon conversion region beyond 1100 nm, which can help promote an extra 6% of power conversion efficiency (PCE) as bottom subcells for silicon solar cell. Although halide liquid exchange is the dominant passivation strategy for CQDs, it is difficult to passivate all the surface defects, especially for IR CQD, which leaves the main limitation for improving PCE. Here, a facile in-situ solution-processed patch-passivation strategy was first proposed for developing efficient PbS CQD IR solar cells. A typical Lewis base triphenylphosphine oxide (TPPO) was added to I-/Br- capped PbS CQDs, aiming at passivation with uncoordinated Pb2+ as a "patch-ligand". As a result, the phosphorus oxygen bond coordination could help suppress the non-radiative recombination in CQD films. The TPPO-passivated devices delivered an IR PCE as high as 1.36% under silicon-filtered AM 1.5G, along with a promising open-circuit voltage (V-OC) of 0.44 V, both of which are the highest among other single-junction solar cells with a band gap of similar to 0.95 eV. The significant VOC and fill factor (FF) enhancement can be attributed to the decrease in defect density and faster charge transport in TPPO-passivated devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Probing and Controlling Surface Passivation of PbS Quantum Dot Solid for Improved Performance of Infrared Absorbing Solar Cells (vol 31, pg 4081, 2019)
    Zhang, Xiaoliang
    Cappel, Ute B.
    Jia, Donglin
    Zhou, Qisen
    Du, Juan
    Sloboda, Tamara
    Svanstrom, Sebastian
    Johansson, Fredrik O. L.
    Lindblad, Andreas
    Giangrisostomi, Erika
    Ovsyannikov, Ruslan
    Liu, Jianhua
    Rensmo, Hakan
    Gardner, James M.
    Johansson, Erik M. J.
    CHEMISTRY OF MATERIALS, 2019, 31 (23) : 9915 - 9915
  • [32] 10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent Polarity-Engineered Halide Passivation
    Lan, Xinzheng
    Voznyy, Oleksandr
    de Arquer, F. Pelayo Garcia
    Liu, Mengxia
    Xu, Jixian
    Proppe, Andrew H.
    Walters, Grant
    Fan, Fengjia
    Tan, Hairen
    Liu, Min
    Yang, Zhenyu
    Hoogland, Sjoerd
    Sargent, Edward H.
    NANO LETTERS, 2016, 16 (07) : 4630 - 4634
  • [33] Band-structure tailoring and surface passivation for highly efficient near-infrared responsive PbS quantum dot photovoltaics
    Zhou, Ru
    Niu, Haihong
    Ji, Fengwei
    Wan, Lei
    Mao, Xiaoli
    Guo, Huier
    Xu, Jinzhang
    Cao, Guozhong
    JOURNAL OF POWER SOURCES, 2016, 333 : 107 - 117
  • [34] Ambient Stable and Efficient Monolithic Tandem Perovskite/PbS Quantum Dots Solar Cells via Surface Passivation and Light Management Strategies
    Tavakoli, Mohammad Mahdi
    Dastjerdi, Hadi Tavakoli
    Yadav, Pankaj
    Prochowicz, Daniel
    Si, Huayan
    Tavakoli, Rouhollah
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (21)
  • [35] High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation
    Chang, Jin
    Kuga, Yuki
    Mora-Sero, Ivan
    Toyoda, Taro
    Ogomi, Yuhei
    Hayase, Shuzi
    Bisquert, Juan
    Shen, Qing
    NANOSCALE, 2015, 7 (12) : 5446 - 5456
  • [36] Efficient PbS colloidal quantum dot solar cells employing Cu2O as hole transport layer
    Satyendra Prasad
    Pooja Sadanand
    D. K. Lohia
    Optical and Quantum Electronics, 2021, 53
  • [37] Efficient PbS colloidal quantum dot solar cells employing Cu2O as hole transport layer
    Prasad, Satyendra
    Sadanand
    Lohia, Pooja
    Dwivedi, D. K.
    OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (08)
  • [38] Optical engineering of PbS colloidal quantum dot solar cells via Fabry–Perot resonance and distributed Bragg reflectors
    Sumin Bae
    Matthew Duff
    Jun Young Hong
    Jung-Kun Lee
    Nano Convergence, 10
  • [39] Solution-Phase Hybrid Passivation for Efficient Infrared-Band Gap Quantum Dot Solar Cells
    Mahajan, Chandan
    Sharma, Ashish
    Rath, Arup K.
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (44) : 49840 - 49848
  • [40] Enhanced Passivation and Carrier Collection in Ink-Processed PbS Quantum Dot Solar Cells via a Supplementary Ligand Strategy
    Yang, Xiaokun
    Yang, Ji
    Ullah, Muhammad Irfan
    Xia, Yong
    Liang, Guijie
    Wang, Song
    Zhang, Jianbing
    Hsu, Hsien-Yi
    Song, Haisheng
    Tang, Jiang
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (37) : 42217 - 42225