On the linearized Whitham-Broer-Kaup system on bounded domains

被引:0
|
作者
Liverani, L. [1 ]
Mammeri, Y. [2 ]
Pata, V. [3 ]
Quintanilla, R. [4 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicazioni, Edificio U5,Via Cozzi 55, I-20125 Milan, Italy
[2] Univ Jean Monnet, CNRS, Inst Camille Jordan, UMR 5208, 23Rue Dr Paul Michelon, F-42100 Saint Etienne, France
[3] Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[4] Univ Politecn Cataluna, Dept Matematiques, C Colom 11, Terrassa 08222, Barcelona, Spain
关键词
Whitham-Broer-Kaup system; dispersive equations; spectrum; linear semigroups; TRAVELING-WAVE SOLUTIONS; EQUATIONS; EXPLICIT;
D O I
10.1017/prm.2023.85
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the system of partial differential equations {eta(t) - alpha u(xxx) - beta eta(xx) = 0 u(t) + eta(x) + beta u(xx) = 0 on bounded domains, known in the literature as the Whitham-Broer-Kaup system. The well-posedness of the problem, under suitable boundary conditions, is addressed, and it is shown to depend on the sign of the number x = alpha - beta(2). In particular, existence and uniqueness occur if and only if x > 0. In which case, an explicit representation for the solutions is given. Nonetheless, for the case x <= 0 we have uniqueness in the class of strong solutions, and sufficient conditions to guarantee exponential instability are provided.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Bifurcation method and traveling wave solution to Whitham-Broer-Kaup equation
    Shen, JW
    Xu, W
    Jin, YF
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 171 (02) : 677 - 702
  • [32] Exact and numerical traveling wave solutions of Whitham-Broer-Kaup equations
    El-Sayed, SM
    Kaya, D
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 167 (02) : 1339 - 1349
  • [33] Computational analysis for fractional model of coupled Whitham-Broer-Kaup equation
    Singh, Jagdev
    Gupta, Arpita
    Baleanu, Dumitru
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 110 : 613 - 628
  • [34] On the approximate solution of fractional-order Whitham-Broer-Kaup equations
    Khan, Hassan
    Gomez-Aguilar, J. F.
    Alderremy, A. A.
    Aly, Shaban
    Baleanu, Dumitru
    MODERN PHYSICS LETTERS B, 2021, 35 (11):
  • [35] EXACT SOLUTION OF WHITHAM-BROER-KAUP SHALLOW WATER WAVE EQUATIONS
    Ahmad, Jamshad
    Mushtaq, Mariyam
    Sajjad, Nadeem
    JOURNAL OF SCIENCE AND ARTS, 2015, (01): : 5 - 12
  • [36] ON THE NUMERICAL SOLUTION OF WHITHAM-BROER-KAUP SHALLOW WATER WAVE EQUATIONS
    Olayiwola, Morufu Oyedunsi
    JOURNAL OF SCIENCE AND ARTS, 2016, (04): : 337 - 344
  • [37] Well-posedness of Whitham-Broer-Kaup equation with negative dispersion
    Bedjaoui, Nabil
    Mammeri, Youcef
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (01):
  • [38] An efficient technique to study of time fractional Whitham-Broer-Kaup equations
    Bhatnagar, Nishant
    Modi, Kanak
    Yadav, Lokesh Kumar
    Dubey, Ravi Shanker
    INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY, 2024,
  • [39] VARIATIONAL PRINCIPLES FOR FRACTAL WHITHAM-BROER-KAUP EQUATIONS IN SHALLOW WATER
    Wang, Kang-Jia
    Wang, Kang-Le
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (02)
  • [40] Fully resonant soliton interactions in the Whitham-Broer-Kaup system based on the double Wronskian solutions
    Xu, Tao
    Zhang, Yi
    NONLINEAR DYNAMICS, 2013, 73 (1-2) : 485 - 498