On the linearized Whitham-Broer-Kaup system on bounded domains

被引:0
|
作者
Liverani, L. [1 ]
Mammeri, Y. [2 ]
Pata, V. [3 ]
Quintanilla, R. [4 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicazioni, Edificio U5,Via Cozzi 55, I-20125 Milan, Italy
[2] Univ Jean Monnet, CNRS, Inst Camille Jordan, UMR 5208, 23Rue Dr Paul Michelon, F-42100 Saint Etienne, France
[3] Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[4] Univ Politecn Cataluna, Dept Matematiques, C Colom 11, Terrassa 08222, Barcelona, Spain
关键词
Whitham-Broer-Kaup system; dispersive equations; spectrum; linear semigroups; TRAVELING-WAVE SOLUTIONS; EQUATIONS; EXPLICIT;
D O I
10.1017/prm.2023.85
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the system of partial differential equations {eta(t) - alpha u(xxx) - beta eta(xx) = 0 u(t) + eta(x) + beta u(xx) = 0 on bounded domains, known in the literature as the Whitham-Broer-Kaup system. The well-posedness of the problem, under suitable boundary conditions, is addressed, and it is shown to depend on the sign of the number x = alpha - beta(2). In particular, existence and uniqueness occur if and only if x > 0. In which case, an explicit representation for the solutions is given. Nonetheless, for the case x <= 0 we have uniqueness in the class of strong solutions, and sufficient conditions to guarantee exponential instability are provided.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] whitham-Broer-Kaup方程新的精确解
    杨琼芬
    杨立娟
    罗守双
    绵阳师范学院学报, 2017, 36 (11) : 8 - 10
  • [22] Symmetry Reduction Related by Nonlocal Symmetry and Explicit Solutions for the Whitham-Broer-Kaup System
    Bo Ren
    Ji Lin
    Journal of the Korean Physical Society, 2018, 73 : 538 - 546
  • [23] A generalized method and general form solutions to the Whitham-Broer-Kaup equation
    Chen, Y
    Wang, Q
    Li, BA
    CHAOS SOLITONS & FRACTALS, 2004, 22 (03) : 675 - 682
  • [24] Solitons, Cnoidal Waves, Snoidal Waves and Other Solutions to Whitham-Broer-Kaup System
    Bhrawy, A. H.
    Abdelkawy, M. A.
    Hilal, E. M.
    Alshaery, A. A.
    Biswas, A.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (05): : 2119 - 2128
  • [25] Well-posedness of Whitham-Broer-Kaup equation with negative dispersion
    Nabil Bedjaoui
    Youcef Mammeri
    Nonlinear Differential Equations and Applications NoDEA, 2024, 31
  • [26] Symmetry Reduction Related by Nonlocal Symmetry and Explicit Solutions for the Whitham-Broer-Kaup System
    Ren, Bo
    Lin, Ji
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2018, 73 (05) : 538 - 546
  • [27] On a 2+1-Dimensional Whitham-Broer-Kaup System: A Resonant NLS Connection
    Rogers, Colin
    Pashaev, Oktay
    STUDIES IN APPLIED MATHEMATICS, 2011, 127 (02) : 141 - 152
  • [28] Fractional Whitham-Broer-Kaup Equations within Modified Analytical Approaches
    Shah, Rasool
    Khan, Hassan
    Baleanu, Dumitru
    AXIOMS, 2019, 8 (04)
  • [29] Painleve integrability and superposition wave solutions of Whitham-Broer-Kaup equations
    Fan, Lulu
    Bao, Taogetusang
    NONLINEAR DYNAMICS, 2022, 109 (04) : 3091 - 3100
  • [30] Solitary waves of the fractal Whitham-Broer-Kaup equation in shallow water
    Liang, Yan-Hong
    Wang, Guo-Dong
    Wang, Kang-Jia
    GEM-INTERNATIONAL JOURNAL ON GEOMATHEMATICS, 2021, 12 (01)